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ABSTRACT

Thin films are widely employed in designing a variety of micro and nano-electro-

mechanical devices. The fabrication strategies employed and the device performance

both depend crucially on the adhesive and frictional properties of these thin films for a

given substrate[1]. In this project, we have explored the role of geometry in modifying the

strength of adhesion and friction between a thin film and a substrate of given materials.

In our experiments, we loaded an ultra-thin circular polystyrene film on top of a swollen

hydrogel sphere, a super absorbent polymer ball which shrinks over time due to evapora-

tion of water. And by measuring the compression and shrinking rate of the film and the

substrate respectively through image analysis, we found that the frictional interaction

between the substrate and the film depends on the underlying Gaussian curvature[2] of

the substrate.

By repeating the experiment on a flat and cylindrical substrate both of which have zero

Gaussian curvature but are made from the same material we conclusively demonstrated

that the friction gets enhanced with increasing positive Gaussian curvature of the sub-

strate. Following this, we also tested the case of the convex and concave type of positive

Gaussian curvatures. Further, on spherical surfaces, the film develops a very specific type

of crumpling pattern which gets denser with time. Patterns along with experiment on

concave positive Gaussian curvature together directed us to recognize that the direction

of elastic stress is responsible for the increase in frictional interaction with an increase in

positive convex Gaussian curvature of the substrate. The experiment on positive convex

Gaussian curvature also allows us to explore crumpling dynamics without disturbing the

experiment by re-opening the crumpled film, hence emerging as a promising experimental

approach for future studies on such processes.
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Chapter 1

Introduction

Recently, people have started deploying sheets as sensing tools in MEMS and NEMS de-

vices, which are widely being used in research and industries. Graphene straintronics[1] in

which large strains are used to deform graphene and modify the electronic band structure

of graphene. Doing this without delamination is a challenging task due to the require-

ment of high adhesion energies. Nanomechanical switch[1] is another promising technol-

ogy where strong adhesion reduces the device performance. Such problems are densely

populated in the development of MEMS and NEMS technology. Due to the wide range

of available material types, deformation patterns diversity and non-linearity in problems

involving deformation of 2-D sheets, people are still struggling to understand them in

different settings like in presence of a loading force[3], pattern dependence on history of

crumpling and directions of forces[4], etc. The non-linearity which encompasses mostly

all the problems are being tackled through computational methods. On the same line,

our work shows how adhesion can be regulated exploiting the geometry of the underlying

surfaces which people believed to be a promising area capable of solving the problem of

adhesion regulation. We have lucidly shown the potential of geometry in resolving excess

or lack of adhesion issues through designing the required Gaussian Curvature of their

substrates at the time of fabrication.

Scientists at NASA and other space agencies like European Space agency and SpaceX

are showing their interest towards soft-robotics. Not just that, but many bio-robots

are also being developed across the world for medical treatment techniques. The reason

behind this is, such robots can minimize the damage cost by a huge amount, these are

lightweight, so it can improve payload capacities in space missions. They can help doctors

reach inner body harmlessly and treat humans and animals effectively. Soft-robots are

made up of soft-elastic organic materials, at the microscopic scale they would also suffer

from problems related to adhesive and frictional forces. In such a case, our work might

help in enhancing the efficiency of such robots.

Our system consists of a rigid thin film on a soft curved surface which appears fre-
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quently in nature e.g. fruits skin, animal skin, etc. This study may help understand

their dynamics as well, open doors to new research strategies. So, to get a deeper under-

standing on the root of the problem and to be able to catch the missing link which can

describe the effect that we observed in our experiments, we need to start from the birth

of the theory of elasticity.

(a) (b)

Fig. 1.1: (a) Galileo Galilei (1564-1642). Oil painting after Justus Wellcome Library,
London. (b) Augustin-Louis, Baron Cauchy around 1840. Lithography by Zéphirin
Belliard after a painting by Jean Roller.

Theory of elasticity is one of the famous theories in Physics. It has such an interest-

ing spectrum of problems that this theory enthralled even the great minds of the past

including Galileo, Euler, the Bernoullis, and others[5]. For the first time, the problem of

Elastica was posed by Jordanus de Nemore in De Ratione Ponderis, which stated that

“When the middle of a rod is held fast, the end parts are more easily curved”, it was

centuries after which it was explained with mathematical concepts. Then in 1638, Galileo

raised a fundamental problem which asked how much weight is required to break a beam

with its one end attached to the wall. He too proposed some solution to it. Many others

elaborated Galileo’s work. Then in 1678, Hooke published his linear law of forces and

deformation which stated “The Power of any Spring is in the same proportion with the

Tension thereof... Now as the Theory is very short, so the way of trying it is very easie.”.

On this budding theory, James Bernoulli posed a more precise problem of rectangular

Elastica in 1691, which he partially solved as well in 1692 and published his first solution

in 1694.

The development of the general 3-Dimensional theory of elasticity took place in the

early 1820s with Cauchy’s work on stress tensor[5]. Later, August Foppl and Theodore

von Karman gave a set of nonlinear partial differential equations describing large deflec-

tions of 2-D sheets in 1907 and 1910 [6]. Those equations were derived by solving for

equations of motion from Euler-Lagrange equations. Their theory describes how to cal-

culate total stretching energy and total bending energy across the thickness of the sheet.

But it doesn’t describe the out-of-plane bending deformation energy. This computation

of out of plane deformation is tough because of its non-linearity, computational require-
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ments and unavailability of techniques to measure deformations without disturbing the

processes accurately. Hence, people, these days are working on developing ways to cal-

culate energies for out-of-plane deformations. And the effect that we observed in our

experiment is a result of both stretching and out-of-plane bending of a 2D sheet. So, the

study of out-of-plane deformation was the missing piece in the history of elasticity which

can account for the dependence of solid to solid friction on a geometrical parameter. Be-

cause our experiment shows that in this small length scale, this dependence is notable.

Therefore, it is necessary that we understand how friction scales with the geometry of

the underlying surface.

1.1 Motivation for this experiment

While working on crumpling, we are trying to study the effects of elastic energy, this

might help us back-calculate out-of-plane bending energy. When we talk about the mi-

croscopic world, the forces that we don’t even realize in day to day life become significant

in various phenomena that one observes. It is because all the forces have some range

of length scale where it dominates over other forces. Since our experiment ranges in

few hundred nano-meter thicknesses, forces like adhesion, friction and mechanical forces

dominate over other kinds of forces. In this regime, these forces can be regulated largely

by tweaking parameters by small values. One such parameter that we found is surface

geometry which can regulate elastic stress, adhesive and frictional forces notably.

To realize this dependence on surface geometry, let’s first understand how friction and

adhesion are defined.

1.1.0.0 Friction

Friction is the result of electromagnetic interaction between surfaces. There are mainly

two types of friction:

1. Static friction : It acts between surfaces which are not moving relative to each

other.

2. Dynamic/kinetic friction : It acts between surfaces which are moving relative

to each other.

Three empirical laws describe the behaviour of solid to solid frictional interaction:
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1. Amonton’s First Law : It says that frictional force is directly proportional to

the applied load.

2. Amonton’s Second Law: It says that friction is independent of the apparent

area of contact.

3. Coulomb’s Law of Friction: It says that kinetic friction is independent of sliding

velocity.

It is important to note that the solid-solid frictional interaction is proportional to

the applied load. So, the total vector sum of the loading force will determine how much

friction does an object experiences.

1.1.0.0 Adhesion

Particles tend to attract particle of another kind. It arises because of intermolecular

forces. It can cause an increase in frictional interaction by increasing the loading force.

The two different objects involved here can exist in different phases as well. The possible

combinations of states where adhesion can arise are:

1. Solid to solid adhesion

2. Solid to liquid adhesion

3. Liquid to liquid adhesion

Adhesion energy is measured in terms of Surface energy. Surface energy is the free

energy change γ when the surface area of a medium is increased by unit area, which is

equivalent to separating two half unit areas from contact[7].

γ1 =
W11

2
(1.1)

Where γ is energy per unit area

The kind of adhesion involved in our experiment is shown below in Fig. 1.2 below
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Fig. 1.2: This figure shows two solid blocks of different materials 1 and 2 attached to each
other inside a liquid of the third kind of material 3. 1 and 2 are separated after which
space gets occupied by the liquid 3.

Dupre equation, which gives the amount of work that has to be done for this process

of separating two objects in a liquid medium as shown in Fig. 1.2 is given as :

W132 = W12 +W33 −W13 −W23 (1.2)

Where, W132 is the total work done during the process, the total adhesion energy.

First, to separate 1 and 2, the amount of work that has to be done is W12. Amount of

work that has to be done for each unit area of object 1 and 2 is W12/2. Similarly, W33

amount of work has to be done to separate liquid of half unit area from each other on

both sides of the objects. When the two half unit area of liquid 3 will combine with one

unit area of object 1 and object 2, we will gain W13 and W23 amount of energy.

1.2 Outline of the experiment

In order to study the frictional interaction in a crumpling scenario of a thin film with a

solid substrate, firstly, we need a probe which can compress the sheet isotropically at a

given constant rate. We chose the decorative commercial Hydrogel balls for this purpose.

Next, we required a set-up through which we can observe and store the ongoing process

in images. As it is a transparent system, we designed a customized set-up whose entities

are explained elaborately in Chapter 2.

To conduct experiments, we raise an ultra-thin circular Polystyrene film on top of a

swollen spherical hydrogel substrate as shown in Fig.1.3. Then the substrate along with

the film is kept outside the water on a stage where we can observe and record the pro-

cess of crumpling. As the substrate shrinks due to evaporation of water, it isotropically

compresses the film on top of it. The film gets some initial folds[8] which later evolve

into a complex pattern consisting of wrinkles, folds and crumpled ridges. In the end,
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we analyse the time-lapse of the whole process to study both the pattern as well as the

frictional interaction between the ball and the film without disturbing the sheet while the

experiment is going on.

(a) (b)

Fig. 1.3: Orange Film confined to the ball (a) before, (b) after. This image shows how
our system looks before and after raising the film on the ball.

To analyse this complex system one needs to have precise control over many param-

eters like the thickness of the film, size of the film, adhesion between the film and the

substrate, evaporation rate of the substrate, pattern distribution etc. While some aspect

of this experiment is under development, we could experimentally realize the dependence

of frictional interaction between the substrate and the film on substrates underlying

Gaussian curvature. We could do this by examining the rate at which hydrogel and film

are shrinking and getting compressed respectively from the images and if there is any

correlation among them through image analysis.

While doing so, we also came across various interesting observation presented in Chap-

ter 4 for future references.

There are a few useful reading materials for mechanics of deformations and image

analysis which can be found here in the following references [9][10][11][12].

All the codes for image analysis can be found in the Appendix as well as in the following

GitHub link, https://github.com/zorawar12/MS-Thesis

https://github.com/zorawar12/MS-Thesis


Chapter 2

Materials and method

In this chapter, we will look at each component of this experiment. How they are used

and what was the purpose of using that apparatus. We will also see how this experiment

was done in details including methods to prepare hydrogels and polystyrene films. Most

importantly, we will see how to set up the contrast and background to image films on top

of the ball and what is the convention of data arrangement in folders to be able to run

the codes and reproduce the data and do analysis on them.

2.1 Hydrogel balls

A hydrogel is hydrophilic water gel which can absorb a very large volume of water com-

pared to its dry state volume. Commercial ones are spherical in shape and are composed

of a water-absorbing super-absorbent polymer (SAP, commonly known as slush powder

in dry form)[13] such as polyacrylamide bound together with the help of a cross-linking

molecule. And depending upon the type of polymer and the cross-linking molecule, the

physical properties of the beads are determined. Commonly, these are used as decoration

objects, for agricultural purposes, in sanitary napkins, etc. The commercially available

dry beads range from 1-2.5mm in diameter. And when they completely swell, the di-

ameter ob the ball ranges from 1.2-2.5cm. There are other larger size variants are also

available in the market. In general, gels are considered as soft solid materials. The image

of these balls and chemical is shown in Fig. 2.1.
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(a) (b)

Fig. 2.1: (a)Hydrogel balls, (b) Polyacrylamide (Wikipedia), the building block of hydro-
gel balls

Hydrogel preparation procedure[14]:

1. Firstly, a pre-gel solution of the monomer N-(hydroxymethyl)-acrylamide (48% so-

lution in water, Sigma-Aldrich) of the desired concentration is prepared in deionized

water.

2. 0.25% of potassium persulfate (99.99% trace metals basis, Sigma-Aldrich) by weight

and 0.3% of N, N, N, N-tetramethylethylenediamine (TEMED, ≥ 99.5%, purified

by re-distillation, Sigma-Aldrich) by weight was then dissolved into the pre gel

solution.

3. After mixing, within 10 minutes, the solution starts polymerizing. So before poly-

merization starts, the solution is kept in the mould of the desired shape.

Method to get hydrogel surfaces of various Gaussian curvatures:

1. Spherical (Positive convex Gaussian surface): They are commercially avail-

able in this shape. It can also be prepared in the above-described method with a

spherical mould like a Table Tennis ball.

2. Flat (Zero Gaussian surface): It can be prepared using a flat mould or else the

commercially available balls can be cut into hemispheres using a sharp blade and

the flat part of the hemisphere can be used as a flat surface.

3. Cylindrical (Zero Gaussian surface): It can also be prepared using a cylindrical

mould or else the top part of the commercially available balls can be cut by rotating

the ball along the axis parallel to the blade and oscillating the blade from its edge to

edge. The cylindrical part so obtained can be used. It often gets non-zero Gaussian

curvature if not cut properly.

4. Bowl (Concave positive Gaussian surface): This can be prepared using a

mould or else the commercially available balls can be cut into required shape using

a sharp curved blade rotating along an axis like scooping an ice-cream and the

generated surface is a desired one. This method of cutting often breaks the ball

due to the curvature of the blade.
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5. Saddle (Negative Gaussian surface): It can be prepared using a mould or else

the commercially available balls can be cut using a sharp curved blade by scooping

along with rotating the ball and the generated internal part of the ball can be used

as a saddle surface. This method of cutting also breaks the ball very often.

2.2 Polystyrene films

Polystyrene[15] is a hydrophobic compound shown in Fig.2.2, commonly used as plastic

material, for instance, Petri dishes are made using this. It is an aromatic hydrocarbon

polymer made from the monomer styrene. They come in the form of beads of 2-3mm in

diameter. We use these beads to prepare our ultra-thin films.

Fig. 2.2: Polystyrene (Wikipedia)

Method to prepare the ultra-thin films[16]:

1. Firstly, 0.02wt% Nile-Red solution is prepared by dissolving it in Toluene through

a vortex mixer.

2. Then the required thickness in terms of wt% is decided, say 5wt%. And based on

the weight of total solution that is required, 5% of the total weight is taken to be

Polystyrene beads and the rest of the weight is filled with Toluene-Nile-red solution.

3. Then the mixture is well mixed through the vortex mixer. It is mixed until the

Polystyrene dissolves in it completely.

4. The solution is then labelled and kept for a day to allow the polystyrene to dissolve

homogeneously throughout.

5. After one day, clean glass slides are kept on Spin coat machine with say 1500RPM,

for 1 minute with an acceleration of 3.

6. After that, Acetone solution is spread over the glass slide and the slide is cleaned

by spinning it.
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7. Wait for a minute to allow the slide to dry out, then the PS+Toluene+Nile-Red

solution is homogeneously spread on top of the glass slide.

8. The slide is then spin-coated with the solution.

9. It is usually easy to cut-out the film one day after it is coated.

2.3 Imaging set-up

Below there is a schematic of the experimental set-up shown in Fig.2.3a. There are four

major components to generate the kind of contrast required to be able to see the film of

a few hundred nano-meter thick:

1. Light obstructing disc : This is used to not allow light to pass through the

centre of the ball. This is required because these balls are transparent. It is kept

right below the ball. And its diameter should be decreased with time. Image of

this template is shown in Fig.2.3b

(a) (b)

Fig. 2.3: (a)Experimental set-up showing two white DC light sources, two cameras one
at top and one at the side, a laser in between two cameras to fluoresce the film, (b)
Closeup view of the ball hanging on thin wire supported by two crocodile clips with light
obstructing disc right below it and film on top of the ball.

2. Background light with diffuser : This light source should be a DC light. Else

the flickering of light will become noise for analysis. This light is used to see the

boundary of the ball.

3. Laser : A laser light of wavelength 532nm is used to excite the fluorescence in the

dye Nile red which is present in the film. The film fluoresces with an orange colour

which creates the required contrast between the ball and the film. Thus making it

easy to see the film as well as the patterns so formed on it.
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4. Camera and Low pass filters : We used Nikon D5300 Camera with Micro Nikkor

60mm Nikon lens. It was equipped with three Low pass filters, to reduce the noise

due to the laser used to excite the fluorescence. For imaging, we kept our camera

in Manual mode, with Aperture size F40 to get wide-area under focus and different

Exposure times ranging from 1/5” to 10” depending upon the generated contrast

between the ball and the film due to different curvature and shapes of the substrate.

For different experiments, we set different interval times for imaging to look at long

time changes and short-time changes and this can be controlled through Laptop

using a Python-Arduino integrated code or Arduino controlled IR blaster remote

control if one needs images in different intervals in a single run. Both the codes are

described in Appendix III and IV.

2.4 Useful handling tools and techniques

2.4.1 Ball raiser

This is a ring-shaped raiser with a slider to be able to change rings diameter to increase

its range of applicability as shown in Fig.2.4a.

(a) (b)

Fig. 2.4: (a) Schematic of ball raiser : Ball is raised using the ’o’ ring part whose diameter
is adjustable, (b) Schematic of film raiser : Film is raised using the ’o’ ring part using a
liquid film like soap film.

2.4.2 Film raiser and holder

In this method, a water film is formed using the ring in Fig.2.4b similar to that of a soap

film used to create soap bubbles. The ring is taken out of the liquid such that film is
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encompassed by the periphery of the ring with faint air blown through the mouth on film

to avoid film collapsing on the ring due to impulse created due to film formation, the film

can be raised flat on water or soap film so formed.

Caution: It is more likely that the film will collapse due to impulse from film formation.

2.4.3 Film stamper

This method is used to transfer the film onto a ball cut out into a surface with the

required curvature. In this method, the film is raised on a ball cut with another half of

the desired Gaussian curvature. The film is then stamped on the required surface. This

method is only useful if substrate gel has to be protected from getting water.

2.4.4 Hole maker and hydrogel cutter

A cylindrical hollow pipe of the desired diameter is used to make a hole on hydrogels. It

should be pierced at once by holding the ball with a tissue paper. Sharp blades are used

to cut hydrogels. Slow and steady oscillation is the best way to cut using blades.

2.4.5 Film shape template

This is used to cut film of desired shape and size. It is a mask template as shown in

Fig.2.5.

Fig. 2.5: Mask for cutting film. Image courtesy: www.amazon.in
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2.4.6 Stage to mount the substrate with the film

This is one of the most important parts of this experiment, as an unstable stage can

introduce lots of noise and unwanted camera effects, movement of the ball particularly

during experiments run over long periods, etc. which cannot be resolved.

It is an ’O’ shaped object with crocodile clips at its two ends placed on the same

horizontal line. A thin capillary tube is used to pierce hole slightly(1mm) above the

horizontal great circle of the ball. Then a thin wire of diameter less than 0.5mm is passed

through the tube and the tube is then removed. The two ends of the wire are then

tightly tied to the crocodile clips. The wire should be thin enough to not hinder in image

analysis. A schematic 3D diagram of the stage is shown in Fig 2.6.

Fig. 2.6: Schematic of the stage, Red cone represents the crocodile clip and the ball is
hanged on the red wire.

2.5 Camera and Laser control through Ar-

duino

These experiments run over a period of many hours. Images are taken periodically at

certain time intervals. To protect the laser from damages arising due to running contin-

uously over many hours, we switch on the laser only during the period when the camera

takes images. The image taking and the switching on of the laser light is synchronized

using an Arduino board. For this, the camera is kept in Remote control mode with

remote sensor timeout setting more than the imaging interval. The void takePhoto[17]

part of the code sends a particular frequency packet of IR blast which is defined for this

Nikon camera. Then the IR led gives the corresponding output whenever takePhoto()

function is called. The code inside the void loop controls the laser connected to Pins 8
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and 12. Time delays here has to be set for each experiment based on interval time and

the exposure time. IR Led is kept close to the Camera IR sensor to avoid any cycle of

imaging.

The circuit diagram of the controller is shown in Fig.2.7:

Fig. 2.7: Circuit diagram showing Arduino controlling Relays which act as a switch for
the lasers, and the IR LED which remotely controls Cameras using IR radiation of specific
frequency pulses.

For codes, refer to Appendix III.

2.6 Camera and Laser control through the

laptop

The following Python code controls the camera through laptop. It is self-descriptive

through comments in the code. For this code to work, all the libraries should be installed

and the serial port must be up and running through the Arduino. The serial port name

should be changed to the same as Arduino’s. First Arduino code should be run and then

python code. Throughout this entire process, images are being taken by an open-source

software called qDslrDashboard V3.5.9 Linux x64 and stored in the same folder where

python code is running. The same circuit shown in Fig.2.7 is used. For codes, refer to

Appendix IV.
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2.7 Procedure and analysis technique

This section gives a complete description of the steps followed and codes used to analyse

the images acquired during this project.

Steps to reproduce the experimental results:

1. Polystyrene thin films are prepared by following the steps mentioned in section 2.2.

2. Hydrogel ball is swollen using Mili Q water to its largest size.

3. Polystyrene film of the desired shape, size and thickness is cut out from the prepared

slides using the film shape template shown in Fig.2.5.

4. The film is then floated on top of Mili Q water surface in a bowl.

5. A thin capillary tube is pierced through the centre of the hydrogel ball.

6. The ball is then submerged in the bowl along with the capillary tube.

7. The ball along with the capillary tube is then raised using a ball raiser shown in

Fig. 2.4a, such that the film gets confined on top of the ball.

8. One end of a thin wire of diameter less than a millimetre passing through the centre

of a scaling button whose one end is already tied to the stage is pierced across the

ball through the capillary tube.

9. The capillary tube is then removed from the ball once the wire is taken out on the

other side and the other end of the wire is then tied tightly to the stage as shown

in Fig. 2.3b.

10. The lighting is set for both top and side view such that film and the ball boundary

are visible in the image using the black discs below the ball as shown in Fig. 2.3a.

11. Camera settings are done as explained in section 2.3. If controlling the system with

Arduino, laser and camera both should be connected to the Arduino as explained

in section 2.5. Else, both the camera’s with the required time interval is set to take

photographs.

12. If controlling camera and laser through the laptop, connect the camera through

USB to the laptop. The folder named camlivecontrol has to be kept in Desktop. It

contains a python code-named lasercontrol.py and an Arduino code-named Laser-

control.ino. The python code and the Arduino code are explained in Appendix IV

and III. Follow the steps explained in section 2.5 to start taking images.
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Conventions of data arrangements and steps to analyse the timelapse of im-

ages obtained, few useful numerical techniques used can be found here[18][19][20]:

1. Folder of experiments is named as YYYYMMDD.

2. The hierarchy of directory is set as Nilered/Curvature/ < Type of curvature >

/ < Thickness in wtper > / < film to ball initial radius ratios > / < film size

in mili inches > /Y Y Y YMMDD/.

3. Each YYYYMMDD folder contains ‘topview’ folder, ‘sideview’ folder and a Laser-

cam folder. The Lasercam folder contains Arduino code to control the camera and

laser both together using a relay module and IR blaster as explained in Appendix

IV and III.

4. Each ‘topview’ and ‘sideview’ folder contains raw images from the camera, an ex-

periment description.txt file, a folder named dynamics and time.m file.

NOTE: Only images to be analyzed should be kept here, extra images should be

dumped inside dynamics folder.

5. The description.txt file should contain all experimental parameters chosen for that

particular experiment like film size and thickness, etc. The time.m file when run,

gives two files as output inside dynamics folder named as time.ods and times-

tamps.ods.

6. The dynamics folder contains cropped .tif images of the images that have to be

analyzed, an analysis.m file and a regionellipse.m file or a sideview.m file and a

sideanalysis.m and a folder named cropped which will contain all the cropped images

for film and ball and the binary images for the film and the ball separately.

7. The outputs of all the codes are saved inside the folders named ’anaN’ inside the

dataN(N = number) inside the cropped folder.

NOTE: All the codes are available and explained individually with comments in

the Github link provided here 1.2 and also in Appendix V.

8. To do the analysis first time.m should be run, then the regionellipse.m or sideview.m

files should be run, after those programs give output, the analysis.m or sideanaly-

sis.m files should be run. This will provide the plots for deriving inferences of this

experiment.
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2.8 Film thickness measurement

The thickness of the film was measured using the J.A. Wollam Ellipsometry device. It

uses an elliptically polarized light to calculate the thickness of the film by measuring the

change in polarization of the light after reflection from the surface of the film loaded on

top of UV-Ozone cleaned N-type silicon wafers. The thickness of the films used in our

experiments is listed below in Table.2.1

Tab. 2.1: Film thickness measured through Ellipsometry

Film name(in wt%) Dye Solution name Thickness(in nm)
Blank Silicon 250

1 Nile-Red Solution 4 60
1 Nile-Red Solution 2 60
2 Nile-Red Solution 3 149
4 Nile-Red Solution 4 321
5 Nile-Red Solution 4 467
5 Nile-Red Solution 1 426
1 Solution 0 72
2 Solution 0 144

2(Nitin’s) 245
15 Solution 0 1403



Chapter 3

Results

This chapter describes the important results which show the variation of rate of compres-

sion of a film with the underlying Gaussian curvature of the substrate. First, we have

shown how the ball and film look like in a typical image data, followed by this, we have

shown our conventions for image analysis in both top and side views and what is in the

image that we call as patterns. Then we describe the importance of side-view imaging.

In the end, we show that data which leads us to our conclusion and it is then supported

with confirmatory experiments.

3.1 Introduction to typical raw image and

conventions

(a) (b)

Fig. 3.1: (a) 3D schematic of the film on the ball, (b) Actual image of the film on top of
the ball after 2 hours of initiation
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3.1.1 Top view

(a) (b) (c)

Fig. 3.2: Top view image: (a) Ball boundary in green colour detected through code(R),
(b) Film boundary in green colour detected through code(r), (c) Processed image showing
detected pattern

To detect the ball boundary, We binarize the raw image, then remove noise outside the

certain boundary and fill the holes of the inverted image, then operate the open operation

in binary with iteration set to 2-5 in the ImageJ software. We use this image to detect

the ball boundary using regionprops[20] or imfindcircle[19] in MATLAB. Similarly, we

detect the film boundary using films binary form as shown above in Fig.3.2. Detailed

processing is explained in the codes.

3.1.2 Side view

(a) (b)

Fig. 3.3: Side view image: (a) Ball boundary in green colour detected through code(R),
(b) Film boundary in green colour detected through code(W)
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To detect the ball boundary, We binarize the raw image, then remove noise outside the

certain boundary and fill the holes of the inverted image, then operate the open operation

in binary with iteration set to 2-5 in the ImageJ software. We use this image to detect

the ball boundary using regionprops[20] or imfindcircle[19] in MATLAB. For the film,

we take the grey image of the raw image and then scan all the rows for columns once

from left and once from right to detect initial and final point of the film by setting some

threshold as shown in Fig.3.3. And then we measure the film radius mathematically using

the polar form of ellipse[21].

In both the views we use Major axis of the detected elliptical boundary and use

circular approximations to find ball and film radius using major-axis as the radius of the

circle to avoid complexities.

3.2 Why side view

Fig. 3.4: Schematic ray diagram of top view imaging. The orange circle is the film and
the black circle is the ball’s central plane. Both film and ball are being measured at
different distances from the camera but the image plane is the same for both.

Magnification formula from geometrical optics is given by

m =
Image length

Object length
=
Image distance

Object distance
(3.1)
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So, from Fig.3.4, image lengths of objects are given by

Ri(t) = mRo(t) =
Ro(t)f

Ub(t)
(3.2)

ri(t) = ro(t)m =
ro(t)f

Uf (t)
(3.3)

Normalized ball radius is given by

Ri(t)

Ri(0)
=
Ro(t)Ub(0)

Ro(0)Ub(t)
(3.4)

Since, we are looking at the top view of the object, in the image we see the projected

radius of the film, so to get the actual radius of the film, we need to compensate for the

curvature as shown in Fig 3.5.

Fig. 3.5: The schematic diagram for compensation of films radius using projected radius
’r’ of the film on a ball of radius R.

So, the compensated film radius is given by

W = Rsin−1(
r

R
) (3.5)

Now, in image length scale, compensated film radius (the one that we are calculating

while analysing) is given by

Wi(t) = Ri(t)sin
−1(

ri(t)

Ri(t)
) (3.6)

Normalized film radius is given by

Wi(t)

Wi(0)
=
Ri(t)

Ri(0)

sin−1( ri(t)
Ri(t)

)

sin−1( ri(0)
Ri(0)

)
(3.7)
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Substituting equation 3.2, 3.3 and 3.4 in equation 3.7 we get,

Wi(t)

Wi(0)
=
Ro(t)Ub(0)

Ro(0)Ub(t)

sin−1( ro(t)Ub(t)
Ro(t)Uf (t)

)

sin−1( ro(0)Ub(0)
Ro(0)Uf (0)

)
(3.8)

Now the normalized ball and film radius at time (t+1) is given by equation 3.9 and

3.11 respectively.
Ro(t+ 1)

Ro(0)
=
Ro(t)−∆

Ro(0)
(3.9)

=⇒ Ri(t+ 1)

Ri(0)
=

Ub(0)

Ub(t+ 1)

Ro(t)−∆

Ro(0)
(3.10)

Wo(t+ 1)

Wo(0)
=
Wo(t)− µWo(t)

∆
Ro(t)

Wo(0)
=
Ro(t)

Ro(0)

sin−1( ro(t)
Ro(t)

)

sin−1( ro(0)
Ro(0)

)
(1− µ∆

Ro(t)
) (3.11)

=⇒ Wi(t+ 1)Ub(t+ 1)

Wi(0)Ub(0)

sin−1( ro(t+1)
Ro(t+1)

)

sin−1( ro(0)
Ro(0)

)

sin−1( ro(0)Ub(0)
Ro(0)Uf (0)

)

sin−1( ro(t+1)Ub(t+1)
Ro(t+1)Uf (t+1)

)

=
Ro(t)

Ro(0)

sin−1( ro(t)
Ro(t)

)

sin−1( ro(0)
Ro(0)

)
(1− µ∆

Ro(t)
)

(3.12)

=⇒ Wi(t+ 1)

Wi(0)
=
sin−1( ro(t+1)Ub(t+1)

Ro(t+1)Uf (t+1)
)

sin−1( ro(0)Ub(0)
Ro(0)Uf (0)

)

Ub(0)

Ub(t+ 1)

Ro(t)

Ro(0)

sin−1( ro(t)
Ro(t)

)

sin−1( ro(t+1)
Ro(t+1)

)
(1− µ∆

Ro(t)
)

(3.13)

Where, µ = 0 if the film is slipping and 1 if the film is completely stuck

∆ is the change in balls radius, depends on the rate of evaporation

So, the change at any time is given by

Ri(t+ 1)−Ri(t)

Ri(0)
=

Ub(0)

Ub(t+ 1)

Ro(t)−∆

Ro(0)
− Ro(t)Ub(0)

Ro(0)Ub(t)
(3.14)

=⇒ Wi(t+ 1)−Wi(t)

Wi(0)
=
sin−1( ro(t+1)Ub(t+1)

Ro(t+1)Uf (t+1)
)

sin−1( ro(0)Ub(0)
Ro(0)Uf (0)

)

Ub(0)

Ub(t+ 1)

Ro(t)

Ro(0)

sin−1( ro(t)
Ro(t)

)

sin−1( ro(t+1)
Ro(t+1)

)
(1− µ∆

Ro(t)
)

−Ro(t)Ub(0)

Ro(0)Ub(t)

sin−1( ro(t)Ub(t)
Ro(t)Uf (t)

)

sin−1( ro(0)Ub(0)
Ro(0)Uf (0)

)

(3.15)

In completely stuck case, ro(t+1)
Ro(t+1)

= ro(t)
Ro(t)

. So, value of slope = (eq. 3.15/eq. 3.14) will

be 1 if U’s are ignored. But when we are looking at top view, with time film and ball’s
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great circle are coming closer and along with that both ball and film are moving away

from camera, so
Uf (t+1)

Ub(t+1)
>

Uf (t)

Ub(t)
, Uf (t + 1) > Uf (t) and Ub(t + 1) > Ub(t), hence leading

to slope greater than 1.

So, to resolve this, if we fix the ball’s distance from the camera by hanging the ball

through a wire passing through the centre of the ball and then taking images from the

side so that Uf (t) = Ub(t) = Ub(0).

So, the ratio now becomes
Wi(t+1)−Wi(t)

Wi(0)

Ri(t+1)−Ri(t)
Ri(0)

= µ (3.16)

Now the maximum value that the slope can reach is 1. When the slope is 0, that

means the film is slipping and when it is greater than 0, it means the film is sticking

to the substrate but not completely. And the strength of adhesion is determined by the

value of the slope. The larger the slope, larger is the friction due to increased adhesion.

3.3 Dependence of friction on Gaussian cur-

vature

3.3.1 Convex positive Gaussian curvature

Fig. 3.6: The sequence of images from a full-length experiment on a substrate of convex
positive Gaussian curvature.
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Fig. 3.7: Scanning Electron Microscope imaging of film in the final crumpled stage of the
experiment taken at three different magnification.

Fig. 3.8: Schematic of a film on a substrate of positive convex Gaussian curvature.
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Fig. 3.9: Plot showing the time evolution of the major-axis of the ball.

Fig. 3.10: Plot showing the time evolution of the major-axis of the film.
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Fig. 3.11: Plot showing evolution of the major-axis of the film with respect to the major-
axis of the ball.

Tab. 3.1: Experimental parameters for Fig. 3.11

Expt Name

Film

diameter

(Wa0)(in inches)

Film

thickness

(in nm)

Initial

Ratio

(Wa0/Ra0)

Overall

Slope

Hours of expt

(in hours)

20191021 0.812 426 0.94 0.72 80

Here as the time progresses, the rate at which film size is reducing increases with

respect to the ball. This is inferred from the slope in Fig. 3.11 which increases from 0

to 1 when moving from 1 towards 0 along x-axis. Throughout this whole experiment,

the thickness of the film, size of the film, material of the ball and the film and hence the

adhesion between the ball and the film due to their material property remains same but

the only parameter that changes is the Gaussian curvature of the ball. Hence, giving a

hint that rate of compression depending on Gaussian curvature of the substrate. So we

conducted the following experiments on substrates of different Gaussian curvatures.
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3.3.2 Convex positive Gaussian curvature

Fig. 3.12: The sequence of images from the experiment on the substrate of convex positive
Gaussian curvature.

Fig. 3.13: Schematic of a film on a substrate of positive convex Gaussian curvature.

Fig. 3.14: Plot showing the time evolution of the major-axis of the ball.
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Fig. 3.15: Plot showing the time evolution of the major-axis of the film.

Fig. 3.16: Plot showing evolution of film major-axis with respect to the ball major-axis.

Tab. 3.2: Experimental parameters for Fig. 3.16

Expt Name

Film

diameter

(Wa0)(in inches)

Film

thickness

(in nm)

Initial

Ratio

(Wa0/Ra0)

Overall

Slope

Hours of expt

(in hours)

20191221 0.328 467 0.54 0.91 4.54
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3.3.3 Flat zero Gaussian curvature

Fig. 3.17: The sequence of images from the experiment on the substrate of flat zero
Gaussian curvature.

Fig. 3.18: Schematic of a film on a substrate of flat zero Gaussian curvature.

Fig. 3.19: Plot showing the time evolution of the major-axis of the ball.
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Fig. 3.20: Plot showing the time evolution of the major-axis of the film.

Fig. 3.21: Plot showing evolution of the major-axis of the film with respect to the major-
axis of the ball.

Tab. 3.3: Experimental parameter for Fig. 3.21

Expt Name

Film

diameter

(Wa0)(in inches)

Film

thickness

(in nm)

Initial

Ratio

(Wa0/Ra0)

Overall

Slope

Hours of expt

(in hours)

20191104 0.328 426 0.58 0.03 12.3
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3.3.4 Cylindrical zero Gaussian curvature

Fig. 3.22: The sequence of images from the experiment on the substrate of cylindrical
zero Gaussian curvature.

Fig. 3.23: Schematic of a film on a substrate of cylindrical zero Gaussian curvature

Fig. 3.24: Plot showing the time evolution of the major-axis of the ball.
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Fig. 3.25: Plot showing the time evolution of the major-axis of the film.

Fig. 3.26: Plot showing evolution of the major-axis of the film with respect to the major-
axis of the ball.

Tab. 3.4: Experimental parameters for Fig. 3.26

Expt Name

Film

diameter

(Wa0)(in inches)

Film

thickness

(in nm)

Initial

Ratio

(Wa0/Ra0)

Overall

Slope

Hours of expt

(in hours)

20191204 0.328 426 0.51 0.07 13.76
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3.3.5 Concave positive Gaussian curvature

Fig. 3.27: The sequence of images from the experiment on the substrate of concave
positive Gaussian curvature.

Fig. 3.28: Schematic of a film on a substrate of concave positive Gaussian curvature

Fig. 3.29: Plot showing the time evolution of the major-axis of the ball.
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Fig. 3.30: Plot showing the time evolution of the major-axis of the film.

Fig. 3.31: Plot showing evolution of the major-axis of the film with respect to the major-
axis of the ball.

Tab. 3.5: Experimental parameter for Fig. 3.31

Expt Name

Film

diameter

(Wa0)(in inches)

Film

thickness

(in nm)

Initial

Ratio

(Wa0/Ra0)

Overall

Slope

Hours of expt

(in hours)

20191125 0.328 426 0.57 0.04 8.17
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3.4 Dependence of slope of Wa/Wa0 versus

Ra/Ra0 plot on Wa0/Ra0 and thickness of the

film

Fig. 3.32: The slope of Wa/Wa0 versus Ra/Ra0 curves measured over the range where
Ra/Ra0 changes from 1 to 0.98 plotted here as a function of Wao/Ra0. The region beyond
0.6 on the x-axis of this graph contains large noise which we don’t understand until now.

Fig. 3.33: The slope of Wa/Wa0 versus Ra/Ra0 curves measured over the range where
Ra/Ra0 changes from 1 to 0.98 plotted here as a function of thicknesses of the film of
diameter 0.187 inch and o.469 inch.
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Tab. 3.6: The slopes of Wa/Wa0 Vs Ra/Ra0 curves measured over the range where Ra/Ra0

changes from 1 to 0.98 as a function of Wao/Ra0.

321nm 469nm
Film size

(in inches)
Wa0/Ra0

Slope
(0.98 to 1)

Film size
(in inches)

Wa0/Ra0
Slope

(0.98 to 1)
0.062 0.14 -0.06 0.187 0.32 0.28
0.125 0.22 0.15 0.328 0.57 0.98
0.203 0.37 0.37 0.437 0.76 0.55
0.25 0.46 0.57 0.469 0.79 0.78
0.25 0.47 0.39 149nm

0.328 0.6 1.11
Film size

(in inches)
Wa0/Ra0

Slope
(0.98 to 1)

0.328 0.58 0.42 0.187 0.32 0.15
0.375 0.67 0.07 0.312 0.59 1.27
0.375 0.68 1 0.312 0.55 0.92
0.469 0.81 0.71 60nm

0.562 0.97 0.45
Film size

(in inches)
Wa0/Ra0

Slope
(0.98 to 1)

0.156 0.27 0.24
0.187 0.33 0.38

Tab. 3.7: The slopes of Wa/Wa0 Vs Ra/Ra0 curves measured over the range where Ra/Ra0

changes from 1 to 0.98 as a function of thicknesses of the film.

Film diameter = 0.187 inches Film diameter = 0.469 inches
Thickness (in nm) slope Thickness (in nm) slope

60 0.38 60 0.74
149 0.15 321 0.71
467 0.28 467 0.78

A complete list of all the experiments that have been done can be found in Appendix

II



Chapter 4

Additional observations

Here we will look into a few important unusual observations made during this project.

The following sections will describe each of those observations independently which will

help in studying geometrical effect in-depth as well as it will help in future studies of

pattern emergence, dynamics and distribution.

4.1 Anisotropic stick-slip motion of film

While analysis, we found that in large time scale, the overall film compression looks

isotropic, but fitting the film with ellipse instead of a circle from the top-view shows that

when major axis of the film is stuck to the ball, minor axis slips and vice versa as shown

in Fig.4.1. At the current scope of analysis errors, we are sceptical about not having any

kind of least count limitation or image analysis errors. In later experiments, we have not

analyzed for both major and minor axis of the film. But such analysis will tell about the

kind of motion of the film which leads to the specific evolution of the pattern.
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Fig. 4.1: Stick-slip motion of film (not dyed) of thickness = 1403nm and diameter =
0.219 inches. When the major axis plot is flat means film along its major axis is slipping,
right at the centre of that region, minor axis becomes vertical i.e. it gets stuck and vice
versa.

4.2 Stick-slip event of confined film

In one of our experiments, we found that the film slips suddenly in the experiment

and goes back to the initial state with few folds. This happened multiple times in the

same experiment as shown in Fig.4.2. However, we did not see many instances of this

phenomena in the later experiments, but this might help in understanding the movement

of the film. This could also be some kind of disturbance in the experiment in which we

are not sure about. Initially, this was the first experiment which suggested to us that the

film slips while compression, so we started analysing the rate of compression of film.

Fig. 4.2: Sudden slipping of the film without any dye of thickness = 144nm and diameter
= 0.281 inches. The film develops some pattern but later it goes to its initial state by
releasing the folds and the same process repeats several times.
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4.3 Varieties of Wa/Wa0 versus Ra/Ra0 plots

In this whole set of experiments on convex positive Gaussian curvature, we found three

different types of Wa/Wa0 Vs Ra/Ra0 plots. Few were straight-line curve like one shown

in Fig. 4.3, few others were smoothly changing curves like one shown in Fig. 4.4 and

rest were having a sharp change in slope values like one shown in Fig. 4.5. We still don’t

understand the reason behind such a sharp change in slope. But a detailed analysis of the

dependence of elastic stress on Gaussian curvature including out-of-plane deformations

might reveal the reason behind this too.

Fig. 4.3: No change in the slope of this curve, film thickness = 467nm

Fig. 4.4: Smooth transition of the slope of this curve, film thickness = 321nm
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Fig. 4.5: The slope of this curve changes sharply, film thickness = 60nm

4.4 Emergence of various kinds of patterns

In experiments, we found that the pattern can evolve mainly in two different ways as

shown in Fig.4.6 and both the ways start from similar initial states and they lead to

similar final states. The two different ways in which they evolve are:

1. Type 1 : There are radial folds initially, then circumferential folds emerge from

the outer side of the film towards the centre of the film.

2. Type 2 : There are radial folds initially which reaches the centre of the film by

growing and then circumferential folds start emerging from the centre of the film

towards the outer side of the film.

Among both the ways, the second one is more commonly found.

Fig. 4.6: The left image shows the Type 1 pattern evolution and the right image shows
the Type 2 pattern evolution



Chapter 5

Analysis and discussion

In this chapter, we will first discuss the fundamentals of elastic energies due to the general

deformation of a 2D sheet[10]. In later sections, we will describe the approach we took to

explain the dependence of friction on Gaussian curvature of the substrate mathematically

with certain assumptions to simplify the calculations.

5.1 Energy and stress required for general

deformation

Stretching and bending are the two fundamental modes of 2D sheet deformation.

Energy density in a 2D sheet due to stretching is given by

Energy =
Y

2
ε2 (5.1)

Where, Y = Stretching modulus, ε = Strain

and for bending, it is given by

Energy =
B

2
κ2 (5.2)

Where, B = Bending modulus, κ = Curvature along ith direction.

So, considering a sheet in undeformed state with position vectors of the coordinates

of points on sheet,

Ro(x, y) =

xy
0

 (5.3)
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In any coordinate system, the metric of the system gives length of a differential ele-

ment. So, metric for this sheet will be given by goij = ∂iR
o.∂jR

o,

Example 5.1. g11 = ∂xR
o.∂xR

o

=
(

1 0 0
)1

0

0


Similarly, the metric will be given by,

go =

(
1 0

0 1

)
(5.4)

After deformation, let the position vectors be given as,

R(x, y) =

x+ u(x, y)

y + v(x, y)

w(x, y)

 (5.5)

and the corresponding metric will be given by,

g =

(
(1 + ux)

2 + v2
x + w2

x (1 + ux)uy + (1 + vy)vx + wxwy

(1 + ux)uy + (1 + vy)vx + wxwy u2
x + (1 + vx)

2 + w2
x

)
(5.6)

Where, ∂xu = ux convention is used.

So the strain is given by ε = g−g0
2

. How strain is equal to the difference in metric

tensor is explained in section 2 of Chapter 2 in the following book [22].

Hence, stress required for the above strain can now be obtained from the general

Hook’s law[23], given as:

σij =
E

1 + ν
(εij +

ν

1− 2ν
εkkδij) (5.7)

Where, E = Young’s modulus and ν is Poisson ratio.

5.2 Effects of Gaussian curvature on fric-

tional interaction

Consider a thin 2D circular sheet of radius L and of thickness t (t<<L). When it is loaded

onto the ball of radius R, the sheet will experience an adhesive and gravitational force
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when there is no other external force. Let’s assume that gravitational force on the sheet

is negligible in comparison to the adhesive force. Assuming that the sheet cannot deform

out of the plane when conformed to the substrate, due to this adhesive force the sheet

will experience radial stretching and circumferential compression to be able to acquire

the shape of the substrate.

Consider a ring of radius x on flat sheet before confinement as shown in Fig.5.1.

Fig. 5.1: Schematic diagram showing the deformation of a planar sheet when conformed
to a spherical substrate.

Say the sheet after confinement gets isotropically stretched by δx.

So, radial strain[24] is given by

α =
δx

x
(5.8)

New radius of the ring becomes

x
′
= x(1 + α) (5.9)

Before confinement, the circumference of the circle of radius x was

y = 2πx (5.10)

The angle subtended by the new stretched radius of sheet at the center of the ball is

then given by:

θ =
x’

R
(5.11)

So the circumference of the new stretched ring is given by

y′ = 2πRsin(
x’

R
) (5.12)
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So, circumferential strain is given by

β =
y′ − y
y

= R
sin(x

′

R
)

x
− 1 (5.13)

β = R
sin(x(1+α)

R
)

x
− 1 (5.14)

Now since we have both radial and circumferential strain, the total elastic energy

required for producing the strain is given by

Ue = Ur + Uc (5.15)

Ue = [
1

2
Y α2 +

1

2
Y β2]πL2 (5.16)

Initial area of the sheet is given by

A = πL2 (5.17)

After confinement, area of sheet becomes∫ A′

0

dA′ =

∫ L(1+α)

0

2πx(1 + α)dx (5.18)

=⇒ A′ = πL2(1 + α)2 (5.19)

Now, as the sheets get stretched, area of the sheets increases by a small amount, and

as the total adhesion energy depends on the area of the sheet, increase in adhesion energy

due to confining the sheet onto the ball is given by

Ua = −γ(A′ − A) (5.20)

Ua = −γ(πL2(1 + α)− πL2) (5.21)

Ua = −2γπL2α (5.22)

Now, the total energy of the system is given by the sum of equation 5.16 and 5.22

U = Ue + Ua (5.23)

U = [−2γα +
1

2
Y α2 +

1

2
Y β2]πL2 (5.24)

At equilibrium, the total energy of the system can be found by minimizing the equation

5.24.
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∂U

∂α
= [−2γ + Y α + Y β

∂β

∂α
]πL2 (5.25)

At equilibrium, ∂U
∂α

= 0 So,

− 2γ + Y α + Y (R
sin(x(1+α)

R
)

x
− 1)

∂(R
sin(

x(1+α)
R

)

x
− 1)

∂α
= 0 (5.26)

=⇒ −2γ + Y α + Y (R
sin(x(1+α)

R
)

x
− 1)cos(

x(1 + α)

R
) = 0 (5.27)

=⇒ −2γ + Y α + Y (R
sin( x

R
)cos(xα

R
) + cos( x

R
)sin(xα

R
)

x
− 1)

(cos(
x

R
)cos(

xα

R
)− sin(

x

R
)sin(

xα

R
)) = 0

(5.28)

Now, since α < 1 and x
R
< 1, α x

R
<< 1, so we can expand sine and cosine as follows

cos(
αx

R
) = 1 +

1

2!
(
αx

R
)2 (5.29)

sin(
αx

R
) =

αx

R
− 1

3!
(
αx

R
)3 (5.30)

So, equation 5.28 is now given by

−2γ + Y α + Y (R
( x
R
− 1

3!
( x
R

)3)(1 + 1
2!

(αx
R

)2) + (1 + 1
2!

( x
R

)2)(αx
R
− 1

3!
(αx
R

)3)

x
− 1)

((1 +
1

2!
(
x

R
)2)(1 +

1

2!
(
αx

R
)2)− (

x

R
− 1

3!
(
x

R
)3)(

αx

R
− 1

3!
(
αx

R
)3)) = 0

(5.31)

On simplification, we get,

∼ −2γ + Y α + Y (α− 1

6
(
x

R
)2) = 0 (5.32)

=⇒ α =
2γ + Y (1

6
( x
R

)2)

2Y
(5.33)

Thus, when the stretching obeys the functional form in equation 5.33, the energy of

the sheet is minimized and is provided by the adhesive force from the substrate so that

the film can confine to the substrate.

If out of the plane deformations are considered, the total equilibrium energy will

reduce further. But to do that one needs to understand the patterns well and for that

one should be able to classify the patterns. At this stage of this project, we are ignoring

the bending energy due to out-of-plane deformations.

This strain α depends on Gaussian curvature of the underlying substrate ball. So,
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The stress builds on the sheet due to this strain will also depend on underlying Gaussian

curvature of the substrate.

If there is a tangential force on the surface for instance surface tension in case of a

liquid drop, it will contribute to a normal force towards the centre of the drop. This is

called Laplace pressure. By solving the case of a liquid drop, it can be seen that the

Laplace pressure depends on the sum of principal Curvatures of the drop. Similarly, we

can now calculate the Laplace pressure due to this elastic stress which will be directed

normally inwards of the ball which will lead to an increase in the frictional interaction.

Now since the increase in Gaussian curvature would cause an increase in stress in the

sheet. This would cause the frictional interaction between the sheet and the substrate

beneath it to increase with time since Gaussian curvature of the ball is a function of time

in this case.

Numerical analysis for the energy minimization’s and strains is provided in Appendix

I.



Chapter 6

Conclusions and future directions

6.1 Conclusions

From the data in subsection 3.3.1 we saw that the rate of slipping of the film increases

as the radius of the underlying sphere becomes smaller. This result is reproducible in

multiple experiments and it suggests that the frictional interaction between the film and

the ball is dependent on the curvature of the underlying substrate. We saw in experiment

on a flat substrate that the film slipped throughout the experiment until it touches the

boundary of the substrate where it encounters the spherical surface of the ball. Now, to

clarify whether it was the mean curvature or the Gaussian curvature which was important,

we did experiments on cylindrical substrates. There also we found that the film slips on

the substrate similarly as seen on the flat substrate. This series of experiments confirm

that the effective frictional interaction between a thin film and a substrate depends on

the Gaussian curvature of the substrate. So, the next question is how can the frictional

interaction be coupled to the Gaussian curvature of the substrate? For this we did one

more experiment which sheds light on this connection: when the thin film is placed

on a concave substrate, we don’t see any pattern evolution although there are initial

folds similar to that of the convex case since the film slips like on the substrate of zero

Gaussian curvature. So, we arrive at the following picture: in both convex as well as

concave case the film gets stretched and that stretching force has a component along the

normal direction which can either lead to increase or decrease in the effective adhesion

and hence friction based on its direction whether it is directed into the surface (in convex

positive case) or out of the surface (in concave positive case).

The argument presented above is backed by our calculations presented in section

5.2 which are are numerically solved and presented in Appendix I. From the numerical
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analysis, it can be inferred that there exists a minimum elastic energy which depends on

l = Wa0/Ra0. And calculations done above in section 5.2 show that it depends on l2. The

strain plots of α and β show that up to l = 1, the regime where we are working, there is

radial stretching which increases with l and there is circumferential compression which

also increases with l. This analysis is valid for a given instant. Since Gaussian curvature

in our experiment is time dependent, the time-varying numerical analysis will show that

equilibrium energy shifts towards the right with increasing l. This implies that elastic

stress on film will increase with time due to increasing difference between the Gaussian

curvature of the sheet and the ball.

From experiments, we also noticed that as the Gaussian curvature of the substrate

is increased in convex direction, the friction between the film and the ball increases. In

small time, the pattern doesn’t evolve much, and the film slips almost at the same rate

for various thicknesses of the film as it can be inferred from Fig. 3.33. And from Fig.

3.32 it can be inferred that the film sticks more to the substrate when the film size is

increased. Both these plots suggest that accumulating elastic energy due to an increase in

deformation increases the effective adhesion which in turn leads to increase in frictional

interaction.

6.2 Future directions

In day to day life, we often see crumpling of a sheet which is confined to a surface with

Gaussian curvatures, like skin-tissue on the human body, outer covering on objects like

lamination, earth crust and the skin of fruits. It is therefore important to understand

how various wrinkling patterns form on these confined sheets [8]. This is an area of

intense research activities and many questions remain open and actively pursued. In

common crumpling experiments, researchers first crumple the sheet and then reopen

it to analyse the patterns or they try to analyse the ridge and valley patterns by a

scanning method [25] [4]. This approach has helped us understand certain statistical

aspects of the final crumpled state. In contrast, our experiment allows observing the

dynamics as the individual folds and ridges form with increasing compression, as well

as to measure quantities for them without disturbing or reopening the ongoing process.

Rather a reopening process can be explored as a completely different aspect here in

this experiment. A thin film will usually stick on to itself and deforms plastically if

it comes in contact with itself(in 100nm thickness scale), but we found that even after

completely getting crumpled it reopens into a flat sheet with some crease patterns on it

when the crumpled piece is placed on top of the water. What kind of pattern evolution
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makes it possible to arrange in a particular way that even a plastically deformed and

crumpled material can also reopen? It will be further useful to confirm the isotropy

of film compression and understand the motion of the film. This will provide us with

information about how this particular type of pattern develops on surfaces. In this way,

a detailed study of the patterns formed could demystify the secrets of crumpling.

While trying to understand the crumpling process, as described in section 3.2 we

found that due to simultaneous imaging of film and ball which lie on two different planes,

there exist two different values of magnification for the two. This introduces some error

in our measurement of the slope of the curve in the plot Wa/Wa0 versus Ra/Ra0. So,

to resolve this problem either one can calculate and compensate for it or make some

experimental changes. We did some experimental changes by hanging the ball through

a wire. This fixes the ball’s distance from the top camera, so part of the problem gets

resolved but the film distance from the camera still changes and it stays on a plane other

than that of the ball’s centre plane. Thus it remains a challenge to analyze the top view

images without which patterns cannot be studied quantitatively. Recently, our work

in this direction suggested that it might be possible to account for this issue by using

cross-ratio for the images. One needs to improvise the experimental setup and the make

the necessary compensation in analysis to correct for this error arising out of differential

magnifications for the film and the ball.

While exploring all Gaussian curvatures to understand the dependence of frictional

interaction between the film and the ball on Gaussian curvatures, we couldn’t explore

the negative and elliptical Gaussian curvatures due to experimental challenges which we

couldn’t overcome due to lack of hydrogel cutting instruments, information to prepare

desired hydrogel surfaces, time and proper setup to analyze from top-view. Experiment-

ing on such Gaussian curvatures will further strengthen our knowledge on this relation

between friction and the Gaussian curvatures. This will also be useful to validate our re-

sults and remove chances of biases towards observations. It will help analyse the complete

system without any assumption because from the outcome of our analysis, we believe that

our result is valid for all kinds of Gaussian curvature but our final expressions for strains

shows dependence on product of symmetric principal curvatures. Our analysis assumes

that there is no out-of-plane buckling of the film. If we will consider the out-of-plane

buckling, the minimum equilibrium energy will decrease further. Exploration of this

question is a critical confirmation required for the dependence of friction on Gaussian

curvature of the substrate.
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I Verification of energy minimization

This analysis was done in Mathematica.

Ua[α ]:=α2; (* Radial stretching energy*)Ua[α ]:=α2; (* Radial stretching energy*)Ua[α ]:=α2; (* Radial stretching energy*)

β[α , l ]:=Sin[l(1+α)]
l

− 1; (* circumferential strain*)β[α , l ]:=Sin[l(1+α)]
l

− 1; (* circumferential strain*)β[α , l ]:=Sin[l(1+α)]
l

− 1; (* circumferential strain*)

Ub[α , l ]:=β[α, l]2; (* circumferential compression energy*)Ub[α , l ]:=β[α, l]2; (* circumferential compression energy*)Ub[α , l ]:=β[α, l]2; (* circumferential compression energy*)

U [α , l ]:=Ua[α] + Ub[α, l]; (* Total elastic energy*)U [α , l ]:=Ua[α] + Ub[α, l]; (* Total elastic energy*)U [α , l ]:=Ua[α] + Ub[α, l]; (* Total elastic energy*)

Plot[U [α, 0.3], {α, 0, 0.02},AxesLabel→ {α, U [α, l]}]Plot[U [α, 0.3], {α, 0, 0.02},AxesLabel→ {α, U [α, l]}]Plot[U [α, 0.3], {α, 0, 0.02},AxesLabel→ {α, U [α, l]}]

(* Plotting total elastic energy as a function of radial strain α*)(* Plotting total elastic energy as a function of radial strain α*)(* Plotting total elastic energy as a function of radial strain α*)

β[0.0075, 0.3]β[0.0075, 0.3]β[0.0075, 0.3]

Out[ ]=

0.005 0.010 0.015 0.020

α
0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

α
2
+

sin((α + 1) l)

l

-1

2

Fig. .1: Total elastic energy as a function of radial strain for Wa0/Ra0 = 0.3

(∗β[0.0075, 0.3]∗) = −0.00777012

F [α , l ]:=D[U [x, a], x]/.{x→ α, a→ l};F [α , l ]:=D[U [x, a], x]/.{x→ α, a→ l};F [α , l ]:=D[U [x, a], x]/.{x→ α, a→ l};

(* Differentiating total elastic energy to get equilibrium strain*)(* Differentiating total elastic energy to get equilibrium strain*)(* Differentiating total elastic energy to get equilibrium strain*)

α[l ]:=α/.FindRoot[F [α, l] == 0, {α, 0.0}];α[l ]:=α/.FindRoot[F [α, l] == 0, {α, 0.0}];α[l ]:=α/.FindRoot[F [α, l] == 0, {α, 0.0}];

(* Finding solution for α as a function of l.*)(* Finding solution for α as a function of l.*)(* Finding solution for α as a function of l.*)

α[0.65]α[0.65]α[0.65]

Plot[{α[l], β[α[l], l]}, {l, 0, 1},AxesLabel→ {l, Strain},PlotLabels→ {α, β}]Plot[{α[l], β[α[l], l]}, {l, 0, 1},AxesLabel→ {l, Strain},PlotLabels→ {α, β}]Plot[{α[l], β[α[l], l]}, {l, 0, 1},AxesLabel→ {l, Strain},PlotLabels→ {α, β}]

(∗α[0.65]∗) = 0.0333552
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Out[ ]=
0.2 0.4 0.6 0.8 1.0

l

-0.10

-0.05

0.05

Strain

Fig. .2: Radial and circumferential strain as a function of Wa0/Ra0 = 0.3

II List of experiments
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III Camera and laser control through Ar-

duino UNO

1 // Reference: https://www.christidis.info/index.php/personal-projects/

2 //arduino-nikon-infrared-command-code

3

4 #define LEDpin 13

5

6

7

8 void takePhoto(void) {

9 int i;

10 for (i = 0; i < 76; i++) {

11 digitalWrite(LEDpin, HIGH);

12 delayMicroseconds(7);

13 digitalWrite(LEDpin, LOW);

14 delayMicroseconds(7);

15 }

16 delay(27);

17 delayMicroseconds(810);

18 for (i = 0; i < 16; i++) {

19 digitalWrite(LEDpin, HIGH);

20 delayMicroseconds(7);

21 digitalWrite(LEDpin, LOW);

22 delayMicroseconds(7);

23 }

24 delayMicroseconds(1540);

25 for (i = 0; i < 16; i++) {

26 digitalWrite(LEDpin, HIGH);

27 delayMicroseconds(7);

28 digitalWrite(LEDpin, LOW);

29 delayMicroseconds(7);

30 }

31 delayMicroseconds(3545);

32 for (i = 0; i < 16; i++) {

33 digitalWrite(LEDpin, HIGH);

34 delayMicroseconds(7);

35 digitalWrite(LEDpin, LOW);

36 delayMicroseconds(7);

37 }

38 Serial.println("taken" );

39 }

40
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41 void setup() {

42

43 pinMode(LEDpin, OUTPUT); //camera

44 Serial.begin(9600);

45 pinMode(8,OUTPUT); //laser

46 pinMode(12,OUTPUT); //laser

47

48 }

49

50 void loop() {

51 // put your main code here, to run repeatedly:

52 digitalWrite(8,HIGH);

53 digitalWrite(12,HIGH);

54 Serial.print("Laser is on.");

55 delay(1000);

56 takePhoto();

57 delay(24000);

58 digitalWrite(8,LOW);

59 digitalWrite(12,LOW);

60 Serial.print("Laser is off.");

61 delay(35000);

62 }

IV Camera and laser control through Lap-

top using Python and Arduino

Python part -

1 # Libraries

2 import serial as sl

3 import time

4 import datetime

5 import glob

6 import cv2

7

8 s = sl.Serial('/dev/ttyACM0',9600)

9 # s is the port where Arduino is waiting to receive command from this code

10

11 countcheck = 0

12 # This is a flag which informs the code whenever a new image arrives

13

14
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15 k = datetime.datetime.now()

16 # This variable keeps time when the image arrived in the folder.

17

18 times = []

19 # This array keeps the record of times when Laser got a signal.

20

21 try:

22 while True:

23 n = len(glob.glob1("/home/zorawar/Desktop/camlive/","*.JPG"))

24 # 'n' keeps a count of total number of images in the folder at this instant

25

26 if n - countcheck == 1:

27 # when image arrives

28

29 s.write('0'.encode())

30 # Command '0' string is sent to the Arduino.

31

32 t = datetime.datetime.now()

33

34 k = t

35 # Updates the time

36

37 times.append(str(t))

38 # Updated time is saved in the array

39

40 countcheck = n

41 # Flag value is raised to variable 'n' to detect next image

42

43 t1 = datetime.datetime.now()

44 # New time instant is generated

45

46 m = t1-k

47 print(m.total_seconds())

48 # time difference between old and new time is found and printed

49

50 print(countcheck)

51 # Count of current number of images in folder is printed

52

53 if m.total_seconds()>700:

54 break

55 # This condition detects completion of experiment or sync error.

56 except KeyboardInterrupt:

57 pass

58

59 file = open("/home/zorawar/Desktop/camlive/times.txt","w+")

60 # A file is created in the folder

61

62 for i in times:
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63 file.write(i+"\n")

64 file.close()

65 # It writes all the time instances in this .txt file and saves it.

Arduino part- It receives the command from the running python code and controls the

laser.

1 char m;

2 // It creates a variable of character type

3

4 void setup() {

5 // put your setup code here, to run once:

6 Serial.begin(9600);

7 // It switches on the serial port

8 pinMode(8,OUTPUT);

9 // This pin of Arduino will be used to communicate with the laser

10

11 while (!Serial) {

12 ; // wait for serial port to connect. Needed for native USB

13 }

14 }

15

16 void loop() {

17 // put your main code here, to run repeatedly:

18 if(Serial.available()>0)

19 // It says if serial port is found open

20 {

21 m = Serial.read();

22 // The command coming from serial is saved in this variable(which if

23 you remember is '0')

24 }

25 if(m == '0')

26 {

27 digitalWrite(8,LOW);

28 digitalWrite(12,LOW);

29 Serial.print("Laser is off.");

30 m = '1';

31 delay(595000);

32 // if it receives command from port, it switches both laser off, and

33 //resets the variable and waits for given interval of time(1sec = 1000)

34 }

35

36 digitalWrite(8,HIGH);

37 digitalWrite(12,HIGH);

38 Serial.print("Laser is on.");

39 delay(5000);

40 // After that it switches on both the laser.

41 }
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V Image analysis MATLAB codes

V.1 Imaging time extraction (time.m)

1 clc;

2 clear;

3 close all;

4 count=1;

5

6 imagelist = dir(fullfile('*.JPG'));

7 path = pwd;

8 fol = [path '/dynamics/'];

9 for i=1:(length({imagelist.name}) - 1)

10 a = imfinfo(imagelist(i).name);

11 dt1 = datestr(datenum(a.DateTime,'yyyy:mm:dd HH:MM:SS'));

12 dt1 = datevec(dt1);

13 if count == 1

14 k = dt1;

15 end

16 a = imfinfo(imagelist(i+1).name);

17 dt2 = datestr(datenum(a.DateTime,'yyyy:mm:dd HH:MM:SS'));

18 dt2 = datevec(dt2);

19 out=[str2double(imagelist(i).name(5:9))

20 etime(dt2,dt1)];

21 dlmwrite([fol 'time.ods'],out,'-append');

22 % (image number, time elapsed from its previous image)

23 count = 2;

24 end

25 count = 1;

26 for i=1:length({imagelist.name})

27 a = imfinfo(imagelist(i).name);

28 dt1 = datestr(datenum(a.DateTime,'yyyy:mm:dd HH:MM:SS'));

29 dt1 = datevec(dt1);

30 if count == 1

31 k = dt1;

32 end

33 out1=[str2double(imagelist(i).name(5:9))

34 dt1 etime(dt1,k)];

35 dlmwrite([fol 'timestamps.ods'],out1,'-append');
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36 % (image number, YYYY, MM, DD, HH, MM, SS, time elapsed from first image)

37 count = 2;

38 end
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i
n
i
m
_
l
i
s
t

f
i
l
m
_
b
i
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]

2
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u
n
t
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;

%
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u
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t
f
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2
8
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r
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:
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(
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r
i
m
l
i
s
(
:
,
1
)
)
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o
r
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2

3
0
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=
i
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r
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o
l
c
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r
i
m
l
i
s
(
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;
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1
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b
=
i
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o
l
b
i
n
i
m
l
i
s
(
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;
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m
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=
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p
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n
(
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)
;
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3
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e
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p
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t
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c
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m
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e
c
t
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p
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n
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i
e
n
t
a
t
i
o
n
'
,
'
E
c
c
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r
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c
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;
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b
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t
F
i
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e
c
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c
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c
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c
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x
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L
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c
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r
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n
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e
c
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r
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]
;

3
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[
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l
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e
,
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n
d
e
x
]
=
m
a
x
(
b
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i
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;
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m
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m
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c
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e
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c
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i
m
p
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t
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;

4
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i
m
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(
i
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)

4
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=
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c
e
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p
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;

4
4
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b
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(
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;

4
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b
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(
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2
;
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7

X
c
=
b
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F
i
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(
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)
;

4
8
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=
b
e
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t
F
i
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(
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)
;

4
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p
h
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=
d
e
g
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b
e
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F
i
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(
i
n
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;

5
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=
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(
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o
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(
p
h
i
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i
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(
t
)
*
s
i
n
(
p
h
i
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;

5
1
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=
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(
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)
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i
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(
p
h
i
)
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(
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*
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(
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h
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)
;

5
2

p
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(
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'
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'
L
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n
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w
i
d
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)
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3
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l
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f
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m
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i
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e
(
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[
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l
1
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t
e
c
t
i
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(
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n
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m
l
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(
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n
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m
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;

5
5
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a
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(
i
m
p
l
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[
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l
1
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e
t
e
c
t
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(
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o
l
o
r
i
m
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(
i
,
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.
n
a
m
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)
;
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5
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u
b
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e
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c
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i
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b
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(
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b
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b
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b
e
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(
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5
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b
e
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F
i
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(
i
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]
;

6
0

d
l
m
w
r
i
t
e
(
[
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o
l
1
e
x
c
e
l
n
a
m
e
(
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,
o
u
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a
p
p
e
n
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;
%
[
i
m
a
g
e
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y
0
a
b
a
l
p
h
a
]

6
1

e
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d

6
2

c
o
u
n
t
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c
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u
n
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1

6
3

c
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o
s
e
a
l
l
;

6
4

e
n
d

6
5

6
6

l
o
a
d
h
a
n
d
e
l
.
m
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t
;
%
n
o
t
i
f
i
c
a
t
i
o
n
m
u
s
i
c

6
7

n
B
i
t
s
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1
6
;

6
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s
o
u
n
d
(
y
,
F
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,
n
B
i
t
s
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;

V
.2

.0
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n
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m

1
c
l
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;

2
c
l
e
a
r
;

3
c
l
o
s
e
a
l
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;

4
%
S
e
l
e
c
t
i
n
g
t
h
e
d
a
t
a
f
o
l
d
e
r
t
o
a
n
a
l
y
z
e
_
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_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

5
p
a
t
h
=
p
w
d
;

%
p
a
t
h
o
f
c
u
r
r
e
n
t
f
i
l
e

6
f
o
l
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[
p
a
t
h
'
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c
r
o
p
p
e
d
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'
]
;

%
p
a
t
h
o
f
d
a
t
a
f
o
l
d
e
r
s

7
f
i
l
e
s
=
d
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r
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f
o
l
)
;

8
f
o
r
i
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:
l
e
n
g
t
h
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[
f
i
l
e
s
.
i
s
d
i
r
]
)

9
s
u
b
F
o
l
d
e
r
s
1
=
f
i
l
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(
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)
.
i
s
d
i
r
;

1
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i
f
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u
b
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l
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1
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b
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l
d
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i
l
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;

1
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d
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u
b
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o
l
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)
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1
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p
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p
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l
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n
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1
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d
a
t
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=
i
n
p
u
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p
r
o
m
p
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'
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;

1
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o
l
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[
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l
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t
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;

%
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a
t
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o
f
d
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f
i
l
e
s

1
8

1
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n
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i
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_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
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=
d
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p
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;
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t
i
m
e
s
t
a
m
p
s
f
i
l
e
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.
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e
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i
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=
d
l
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a
l
l
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/
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r
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d
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i
l
e
[
i
m
a
g
e
_
n
o
.
x
0
y
0
a
b
a
l
p
h
a
]
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=
d
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/
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i
l
e
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]
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i
n
g
f
i
l
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_
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m
p
m
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=
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]
;

2
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t
i
m
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=
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,
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.
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;

2
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f
o
r
i
=
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:
l
e
n
g
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h
(
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)

2
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m
p
m
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p
m
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(
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/
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;
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c
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p
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i
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m
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_
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_
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;

3
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p
n
g
n
a
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_
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_
R
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.
p
n
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_
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p
n
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;

3
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a
b
e
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(
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p
i
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p
i
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;
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P
l
o
t
t
i
n
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o
f
t
i
m
e
V
s
b
a
l
l
a
n
d
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i
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_
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r
c
e
p
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=
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]
;
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p
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=
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]
;
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[
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p
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;

4
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f
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r
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=
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i
n
e
8
3
t
o
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e
s
l
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n
e
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r
e
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i
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e
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a
l
l
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d
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e
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s
-
f
i
l
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4
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=
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i
g
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r
e
;
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=
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s
(
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e
n
g
t
h
(
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i
m
e
]
;
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;

4
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b
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;
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e
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b
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;
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i
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p
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e
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i
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b
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b
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)

5
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e
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p
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e
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c
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p
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p
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b
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'
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c
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p
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c
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;
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p
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b
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;
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i
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p
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i
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i
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=
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c
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p
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;
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p
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p
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p
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c
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p
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i
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_
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i
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m
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i
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n
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n
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i
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i
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r
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n
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n
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i
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i
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i
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i
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%
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e
a
d
i
n
g
s
f
o
r
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n
a
l
y
z
e
d
e
x
c
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l
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l
e
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:
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p
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i
m
e
,
'
V
a
r
i
a
b
l
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c
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i
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P
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=
n
o
r
m
b
(
a
n
d
(
n
o
r
m
b
>
=
0
.
0
,
n
o
r
m
b
<
=
1
.
1
)
)
;

%
S
e
t
l
o
w
e
r
a
n
d
u
p
p
e
r
l
i
m
i
t

7
3

n
o
r
m
b
2
=
n
o
r
m
b
(
n
o
r
m
b
>
1
.
1
)
;

%
S
e
t
u
p
p
e
r
l
i
m
i
t

7
4

h
(
3
)
=
f
i
g
u
r
e
;

7
5

X
=
[
o
n
e
s
(
l
e
n
g
t
h
(
n
o
r
m
b
1
)
,
1
)
n
o
r
m
b
1
]
;

7
6

b
e
t
a
=
X
\
n
o
r
m
f
(
l
e
n
g
t
h
(
n
o
r
m
f
)
-
l
e
n
g
t
h
(
n
o
r
m
b
1
)
-
l
e
n
g
t
h
(
n
o
r
m
b
2
)
+
1
:
l
e
n
g
t
h
(
n
o
r
m
f
)
-
l
e
n
g
t
h
(
n
o
r
m
b
2
)
)
;
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7
7

l
i
n
e
a
r
r
e
g
=
X
*
b
e
t
a
;

7
8

s
c
a
t
t
e
r
(
n
o
r
m
b
1
,
n
o
r
m
f
(
l
e
n
g
t
h
(
n
o
r
m
f
)
-
l
e
n
g
t
h
(
n
o
r
m
b
1
)
-
l
e
n
g
t
h
(
n
o
r
m
b
2
)
+
1
:
l
e
n
g
t
h
(
n
o
r
m
f
)
-
l
e
n
g
t
h
(
n
o
r
m
b
2
)
)
)

7
9

h
o
l
d
o
n

8
0

p
l
o
t
(
n
o
r
m
b
1
,
l
i
n
e
a
r
r
e
g
,
'
-
-
'
)

8
1

x
l
a
b
e
l
(
'
R
a
/
R
a
0
'
)
;

8
2

y
l
a
b
e
l
(
'
W
a
/
W
a
0
'
)

8
3

l
e
g
e
n
d
(
'
D
a
t
a
p
o
i
n
t
s
'
,
[
'
L
i
n
e
a
r
r
e
g
r
e
s
s
i
o
n
,
'
'
y
-
i
n
t
e
r
c
e
p
t
:
'
n
u
m
2
s
t
r
(
b
e
t
a
(
1
)
)
'
,
s
l
o
p
e
:
'
n
u
m
2
s
t
r
(
b
e
t
a
(
2
)
)
]
,
'
L
o
c
a
t
i
o
n
'
,
'
n
o
r
t
h
o
u
t
s
i
d
e
'
)

8
4

s
a
v
e
f
i
g
(
h
(
3
)
,
[
f
o
l
1
'
R
a
_
b
y
_
R
a
0
_
V
s
_
W
a
_
b
y
_
W
a
0
'
]
)

8
5

s
a
v
e
a
s
(
h
(
3
)
,
[
f
o
l
1
'
R
a
_
b
y
_
R
a
0
_
V
s
_
W
a
_
b
y
_
W
a
0
.
p
n
g
'
]
)

8
6

8
7

%
S
a
v
i
n
g
a
n
a
l
y
z
e
d
r
e
s
u
l
t
s
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

8
8

i
n
i
t
r
a
t
i
o
=
c
o
m
p
m
a
j
(
1
)
/
b
(
1
,
4
)
;

%
i
n
i
t
i
a
l
f
i
l
m
t
o
b
a
l
l
r
a
t
i
o

8
9

h
e
a
d
1
=
{
'
s
l
o
p
e
_
o
f
_
t
_
V
s
_
R
a
'
,
'
y
_
i
n
t
e
r
c
e
p
t
_
o
f
_
t
_
V
s
_
R
a
'
,
'
s
l
o
p
e
_
o
f
_
t
_
V
s
_
W
a
'
,
'
y
_
i
n
t
e
r
c
e
p
t
_
o
f
_
t
_
V
s
_
W
a
'
,
'
s
l
o
p
e
_
o
f
_
R
a
_
b
y
_
R
a
0
_
V
s
_
W
a
_
b
y
_
W
a
0
'
,

9
0

'
y
_
i
n
t
e
r
c
e
p
t
_
o
f
_
R
a
_
b
y
_
R
a
0
_
V
s
_
W
a
_
b
y
_
W
a
0
'
,
'
W
a
_
b
y
_
R
a
_
i
n
i
t
i
a
l
'
}
;

9
1

p
r
o
p
=
t
a
b
l
e
(
s
l
o
p
e
(
1
)
,
i
n
t
e
r
c
e
p
t
(
1
)
,
s
l
o
p
e
(
2
)
,
i
n
t
e
r
c
e
p
t
(
2
)
,
b
e
t
a
(
2
)
,
b
e
t
a
(
1
)
,
i
n
i
t
r
a
t
i
o
,
'
V
a
r
i
a
b
l
e
N
a
m
e
s
'
,
h
e
a
d
1
)
;

9
2

w
r
i
t
e
t
a
b
l
e
(
p
r
o
p
,
[
f
o
l
1
'
g
r
a
p
h
p
r
o
p
e
r
t
i
e
s
.
x
l
s
'
]
)
;

V
.3

F
o
r

si
d

e
v
ie

w

V
.3

.0
si

d
e
v
ie

w
.m

1
c
l
c
;

2
c
l
e
a
r
;

3
c
l
o
s
e
a
l
l
;

4 5
p
a
t
h
=
p
w
d
;

%
p
a
t
h
o
f
c
u
r
r
e
n
t
f
i
l
e

6
f
o
l
=
[
p
a
t
h
'
/
c
r
o
p
p
e
d
/
'
]
;

%
p
a
t
h
o
f
d
a
t
a
f
o
l
d
e
r
s

7
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8 9
%
N
a
m
i
n
g
C
o
n
v
e
n
t
i
o
n
s
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

1
0

c
o
l
o
r
i
m
=
[
'
1
D
S
C
_
'
;
'
1
D
S
C
_
'
]
;

%
1
b
a
l
l
s
,
2
f
i
l
m
s

1
1

b
i
n
i
m
=
[
'
b
b
'
]
;

%
1
b
a
l
l
s
,
2
f
i
l
m
s

1
2

d
e
t
e
c
t
i
m
=
[
'
e
b
'
;
'
e
f
'
]
;

%
1
b
a
l
l
s
,
2
f
i
l
m
s

1
3

e
x
c
e
l
n
a
m
e
=
[
'
b
.
o
d
s
'
;
'
f
.
o
d
s
'
]
;

%
c
r
u
d
e
r
e
s
u
l
t
s
a
v
i
n
g
f
i
l
e

1
4

1
5

%
C
r
e
a
t
e
s
f
o
l
d
e
r
t
o
s
a
v
e
d
a
t
a
a
s
d
a
t
a
%
d
i
n
s
i
d
e
.
.
/
c
r
o
p
p
e
d
/

1
6

f
o
r
k
=
1
:
2
0

1
7

i
f
7
~
=
e
x
i
s
t
(
[
f
o
l
'
d
a
t
a
'
i
n
t
2
s
t
r
(
k
)
]
,
'
d
i
r
'
)

1
8

m
k
d
i
r
(
[
f
o
l
'
d
a
t
a
'
i
n
t
2
s
t
r
(
k
)
]
)

1
9

f
o
l
1
=
[
f
o
l
'
d
a
t
a
'
i
n
t
2
s
t
r
(
k
)
'
/
'
]
;

2
0

b
r
e
a
k

2
1

e
n
d

2
2

e
n
d

2
3

2
4

c
o
l
o
r
i
m
l
i
s
=
[
d
i
r
(
f
u
l
l
f
i
l
e
(
f
o
l
,
[
c
o
l
o
r
i
m
(
1
,
:
)
'
*
.
t
i
f
'
]
)
)
d
i
r
(
f
u
l
l
f
i
l
e
(
f
o
l
,
[
c
o
l
o
r
i
m
(
1
,
:
)
'
*
.
t
i
f
'
]
)
)
]
;

%
[
b
a
l
l
_
i
m
_
l
i
s
t

f
i
l
m
_
i
m
_
l
i
s
t
]

2
5

b
i
n
i
m
l
i
s
=
[
d
i
r
(
f
u
l
l
f
i
l
e
(
f
o
l
,
[
b
i
n
i
m
(
1
,
:
)
'
*
.
t
i
f
'
]
)
)
]
;

%
[
b
a
l
l
_
b
i
n
i
m
_
l
i
s
t

f
i
l
m
_
b
i
n
i
m
_
l
i
s
t
]

2
6

2
7

2
8

c
o
u
n
t
=
1
;

%
c
o
u
n
t
f
l
a
g

2
9

f
o
r
i
=
1
:
l
e
n
g
t
h
(
c
o
l
o
r
i
m
l
i
s
(
:
,
1
)
)

3
0

f
o
r
l
=
1
:
2

3
1

i
m
=
i
m
r
e
a
d
(
[
f
o
l
c
o
l
o
r
i
m
l
i
s
(
i
,
l
)
.
n
a
m
e
]
)
;

3
2

i
m
3
=
i
m
s
h
a
r
p
e
n
(
i
m
(
:
,
:
,
1
)
)
;

3
3

i
f
l
=
=
1

3
4

%
D
e
t
e
c
t
i
n
g
B
a
l
l

3
5

i
m
b
=
i
m
r
e
a
d
(
[
f
o
l
b
i
n
i
m
l
i
s
(
i
,
l
)
.
n
a
m
e
]
)
;

3
6

d
e
t
e
c
t
=
r
e
g
i
o
n
p
r
o
p
s
(
'
t
a
b
l
e
'
,
i
m
b
,
'
C
e
n
t
r
o
i
d
'
,
'
M
a
j
o
r
A
x
i
s
L
e
n
g
t
h
'
,
'
M
i
n
o
r
A
x
i
s
L
e
n
g
t
h
'
,
'
O
r
i
e
n
t
a
t
i
o
n
'
,
'
E
c
c
e
n
t
r
i
c
i
t
y
'
,
'
A
r
e
a
'
)
;

3
7

b
e
s
t
F
i
t
s
=
[
d
e
t
e
c
t
.
C
e
n
t
r
o
i
d
(
:
,
1
)
d
e
t
e
c
t
.
C
e
n
t
r
o
i
d
(
:
,
2
)
d
e
t
e
c
t
.
M
a
j
o
r
A
x
i
s
L
e
n
g
t
h
d
e
t
e
c
t
.
M
i
n
o
r
A
x
i
s
L
e
n
g
t
h
d
e
t
e
c
t
.
O
r
i
e
n
t
a
t
i
o
n

3
8

d
e
t
e
c
t
.
A
r
e
a
]
;
%
t
h
i
s
i
s
j
u
s
t
t
o
c
o
n
v
e
r
t
t
a
b
l
e
f
o
r
m
a
t
o
f
d
e
t
e
c
t
t
o
m
a
t
r
i
x
f
o
r
m
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3
9

[
v
a
l
u
e
,
i
n
d
e
x
]
=
m
a
x
(
b
e
s
t
F
i
t
s
(
:
,
6
)
)
;
%
f
i
n
d
s
m
a
x
i
m
u
m
a
r
e
a
d
e
t
e
c
t
e
d
e
l
l
i
p
s
e

4
0

%
P
l
o
t
i
n
g
b
a
l
l

4
1

i
m
p
l
o
t
=
f
i
g
u
r
e
;

4
2

i
m
s
h
o
w
(
i
m
)

4
3

t
=
l
i
n
s
p
a
c
e
(
0
,
2
*
p
i
,
2
0
0
)
;
%
l
i
n
e
5
1
t
o
6
3
i
s
d
r
a
w
i
n
g
t
h
e
e
l
l
i
p
s
e

4
4

h
o
l
d
o
n

4
5

a
=
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
3
)
/
2
;

4
6

b
=
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
4
)
/
2
;

4
7

X
c
=
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
1
)
;

4
8

Y
c
=
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
2
)
;

4
9

p
h
i
=
d
e
g
2
r
a
d
(
-
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
5
)
)
;

5
0

x
=
X
c
+
a
*
c
o
s
(
t
)
*
c
o
s
(
p
h
i
)
-
b
*
s
i
n
(
t
)
*
s
i
n
(
p
h
i
)
;

5
1

y
=
Y
c
+
a
*
c
o
s
(
t
)
*
s
i
n
(
p
h
i
)
+
b
*
s
i
n
(
t
)
*
c
o
s
(
p
h
i
)
;

5
2

p
l
o
t
(
x
,
y
,
'
g
'
,
'
L
i
n
e
w
i
d
t
h
'
,
1
)

5
3

h
o
l
d
o
f
f

5
4

i
m
w
r
i
t
e
(
i
m
b
,
[
f
o
l
1
d
e
t
e
c
t
i
m
(
l
,
:
)
b
i
n
i
m
l
i
s
(
i
,
l
)
.
n
a
m
e
]
)
;

5
5

s
a
v
e
a
s
(
i
m
p
l
o
t
,
[
f
o
l
1
d
e
t
e
c
t
i
m
(
l
,
:
)
c
o
l
o
r
i
m
l
i
s
(
i
,
l
)
.
n
a
m
e
]
)
;

5
6

o
u
t
=
[
s
t
r
2
d
o
u
b
l
e
(
c
o
l
o
r
i
m
l
i
s
(
i
)
.
n
a
m
e
(
6
:
9
)
)
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
1
)
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
2
)
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
3
)
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
4
)

5
7

b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
5
)
]
;
%
[
i
m
a
g
e
_
n
o
.
x
0
y
0
a
b
a
l
p
h
a
]

5
8

d
l
m
w
r
i
t
e
(
[
f
o
l
1
e
x
c
e
l
n
a
m
e
(
l
,
:
)
]
,
o
u
t
,
'
-
a
p
p
e
n
d
'
)
;

5
9

e
l
s
e
i
f
l
=
=
2

6
0

%
D
e
t
e
c
t
i
o
n
o
f
e
n
d
p
o
i
n
t
s
o
f
t
h
e
f
i
l
m

6
1

f
o
u
n
d
=
0
;

6
2

f
o
r
s
=
1
8
0
:
3
0
0

%
S
e
t
f
i
r
s
t
p
o
i
n
t
d
e
t
e
c
t
i
o
n
c
r
o
p
p
i
n
g

6
3

b
a
c
k
=
i
m
3
(
3
,
s
)
;

6
4

[
v
,
i
n
]
=
m
a
x
(
i
m
3
(
1
:
(
l
e
n
g
t
h
(
i
m
3
(
:
,
s
)
)
/
5
)
,
s
)
)
;

6
5

i
f
a
n
d
(
v
-
b
a
c
k
>
2
0
,
f
o
u
n
d
=
=
0
)

%
S
e
t
t
h
r
e
s
h
h
o
l
d
f
o
r
d
e
t
e
c
t
i
o
n

6
6

f
i
r
s
t
=
[
s
,
i
n
]
;

6
7

f
o
u
n
d
=
1
;

6
8

e
n
d

6
9

e
n
d
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7
0

f
o
r
s
=
6
0
0
:
-
1
:
5
0
0

%
S
e
t
l
a
s
t
p
o
i
n
t
d
e
t
e
c
t
i
o
n
c
r
o
p
p
i
n
g

7
1

b
a
c
k
=
i
m
3
(
3
,
s
)
;

7
2

[
v
,
i
n
]
=
m
a
x
(
i
m
3
(
1
:
(
l
e
n
g
t
h
(
i
m
3
(
:
,
s
)
)
/
5
)
,
s
)
)
;

7
3

i
f
a
n
d
(
(
v
-
b
a
c
k
)
>
1
5
0
,
f
o
u
n
d
=
=
1
)

%
S
e
t
t
h
r
e
s
h
h
o
l
d
f
o
r
d
e
t
e
c
t
i
o
n

7
4

l
a
s
t
=
[
s
,
i
n
]
;

7
5

f
o
u
n
d
=
2
;

7
6

e
n
d

7
7

e
n
d

7
8

a
l
p
h
a
f
=
a
t
a
n
2
(
(
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
2
)
-
f
i
r
s
t
(
2
)
)
,
(
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
1
)
-
f
i
r
s
t
(
1
)
)
)
;

7
9

a
l
p
h
a
l
=
a
t
a
n
2
(
(
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
2
)
-
l
a
s
t
(
2
)
)
,
(
b
e
s
t
F
i
t
s
(
i
n
d
e
x
,
1
)
-
l
a
s
t
(
1
)
)
)
;

8
0

%
P
l
o
t
i
n
g
f
i
l
m

8
1

i
m
p
l
o
t
=
f
i
g
u
r
e
;

8
2

i
m
s
h
o
w
(
i
m
)
%
o
n
t
o
p
o
f
t
h
e
i
m
a
g
e
w
h
i
c
h
y
o
u
w
a
n
t
t
o
d
r
a
w
d
e
t
e
c
t
e
d
e
l
l
i
p
s
e

8
3

t
=
l
i
n
s
p
a
c
e
(
a
l
p
h
a
l
,
a
l
p
h
a
f
,
l
a
s
t
(
1
)
-
f
i
r
s
t
(
1
)
)
;
%
l
i
n
e
5
1
t
o
6
3
i
s
d
r
a
w
i
n
g
t
h
e
e
l
l
i
p
s
e

8
4

h
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;
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m
p
m
a
j
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1
)
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(
1
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;
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)
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[6] Wikipedia contributors. Föppl–von kármán equations — Wikipedia, the free ency-

clopedia, 2019. [Online; accessed 8-November-2019].

[7] Jacob N. Israelachvili. 17 - adhesion and wetting phenomena. In Jacob N. Is-

raelachvili, editor, Intermolecular and Surface Forces (Third Edition), pages 415 –

467. Academic Press, San Diego, third edition edition, 2011.

[8] Benny Davidovitch, Yiwei Sun, and Gregory M. Grason. Geometrically incompatible

confinement of solids. Proceedings of the National Academy of Sciences, 116(5):1483–

1488, 2019.

[9] Prof.Narayan Menon. Wrinkling mechanics.
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hury. Elastowetting of soft hydrogel spheres. Langmuir, 34(13):3894–3900, April

2018.

[15] Wikipedia contributors. Polystyrene — Wikipedia, the free encyclopedia, 2020.

[Online; accessed 3-April-2020].

[16] Jiangshui Huang. Wrinkling of floating thin polymer films. Doctoral Dissertations

1896 - February 2014. 195, 2010.

[17] Arduino camera ir blaster.

[18] Hough transform.

[19] imfindcircles.

[20] regionprops.

[21] Wikipedia contributors. Ellipse — Wikipedia, the free encyclopedia, 2020. [Online;

accessed 3-April-2020].

[22] B. Audoly and Y. Pomeau. Elasticity and Geometry: From hair curls to the non-

linear response of shells. OUP Oxford, 2010.

[23] Pulkit Kumar. Generalized hook’s law.
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