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Abstract. We aim to design algorithms that allow robot swarms to
solve the best-of-n problem using as little resources as possible. Our
minimalistic approach aims to create solutions suitable for simple robots
with fewer memory and computational requirements than the state of
the art algorithms require. While the long term goal is to implement
decentralised algorithms for best-of-n decision making based on hetero-
geneous response thresholds, here we focus on what threshold distribu-
tion allows the swarm to best distinguish between options’ qualities, in
order to select the option with the highest quality. Each robot estimates
the quality of a random option and gives a binary response—accept or
reject—depending on the quality being above or below its threshold. This
study investigates the normal distribution of thresholds that maximises
the probability that the majority of the swarm favours the best alterna-
tive. We conduct our analysis for various types of environments, by con-
sidering different options’ quality distributions and number of options.
Our results form the basis to develop future decentralised algorithms for
swarms of reactive binary robots able to make best-of-n decisions.

1 Introduction

The design of systems composed of minimalistic units can be advantageous to
operate in application scenarios where there are limitations on energy and equip-
ment [14, 36, 11]. For example, future nanorobots that operate in blood vessels
must follow behaviours based on minimalistic computation due to limitation
on their hardware. Similarly, environmental monitoring through biodegradable
robots with limited operational time-span benefits from minimalistic design for
affordable large-scale production. We aim to design minimalistic solutions for a
basic form of coordination in robot swarms, i.e. best-of-n decision making, where
the swarm must reach a consensus on the best option among n alternatives.

Several works investigated swarm robotics solutions for best-of-n problems [30,
22]. Existing solutions that we believe have the fewest requirements on the indi-
vidual robots, in terms of communication, computation, and memory, are based
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on simple voting algorithms combined with quality-based frequency of commu-
nication [32, 29, 31, 19, 37, 3]. Through these methods, robots search for available
options, and once they find one, they make an individual estimate of the option’s
quality and use this quality to regulate their communication frequency. Robots
keep memory of a single option (and its quality), and broadcast to nearby robots
the chosen option only (without quality). Robots update their opinion based on
other robots’ messages, and reach an agreement in favour of the best option by
sending messages with frequency proportional to the self-estimated option’s qual-
ity. Despite the robots’ estimate are subject to measurement errors, this strategy
allows the swarm to filter out noise and achieve high accuracy levels [28, 20].

Our hypothesis is that methods based on heterogeneous response thresholds
can suffice to solve best-of-n problems and remove the need to modulate com-
munication based on quality, hence, removing the need to process and memorise
quality measurements. Behaviours based on response thresholds have a reactive
binary (yes/no) response determined by the stimulus intensity (or option qual-
ity) being above or below a threshold, and can be observed in several eusocial
insect species [8, 24, 18, 25, 34, 27]. Despite individuals’ simplicity, systems com-
posed of response threshold units can display accurate and rational collective
behaviour [24, 35, 9, 17], which is enabled by a crucial element of such systems,
the heterogeneity of their individuals, each having a different threshold [18, 8].

The division of labour in ants, regulated by heterogeneous response thresh-
olds, has inspired the design of several multirobot systems to tackle task al-
location problems [13, 1, 15, 16, 6, 26, 12, 4]. However, despite its potential, only
limited attention has been devoted to apply response thresholds to the design of
consensus decision making systems [9, 23]. While the long term objective is the
deployment of minimalistic binary robots for best-of-n decisions, this paper only
focuses on the relationship between threshold distribution and environmental
stimuli in order to improve the collective ability to distinguish between options
and select the best. Understanding this relationship is the basis of future re-
search aimed to develop decentralised algorithms for autonomous binary robots
that adapt their thresholds to what is best for the given decision conditions.

2 Characterisation of the Problem

Robots operate in a world with n options, each characterised by its quality
{q1, q2, . . . , qn}. The qualities are random variables with probability distribution
function Dq; i.e. we assume that in a given environment the n options’ qualities
are randomly distributed according to Dq. We assume that the swarm is com-
posed of S = n × m robots that operate in a symmetric environment, hence,
during the exploration of the environment, the robots are equally likely to dis-
cover any of the n options and distribute in n subgroups of similar size ≈ m,
with each subgroup estimating the quality of one option. To reduce variability
among experiments, we fix the size of all robot subgroups to exactly m. Robots
are characterised by a response threshold h which is a stochastic variable with
Gaussian probability distribution Dh = N (µh, σh). Each robot either accepts
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or rejects the option that it has estimated by comparing the estimated quality
q̃i with its response threshold (accepts if q̃i ≥ h, otherwise, rejects the option).
For simplicity, but without loss of generality, we do not assume estimation er-
rors (q̃i = qi). Our vision is that robots which accepted an option will engage
in voting in support of that option, while robots which rejected the option will
not vote. Previous studies showed that simple local voting mechanisms (e.g. the
voter model [5, 10]) can consistently lead to a consensus in favour of the option
that is voted by the initial relative majority [21]. While this study does not in-
clude the voting phase, we aim to obtain a proportion of acceptance across the n
available options that will allow the voting process to select the best option. In
this study, a process is considered successful if the most accepted option (i.e. the
largest number of robots accepted it) matches the highest quality option. When-
ever more than one option has the maximum number of accepting robots, one of
the options in the tie is chosen at random. When no robots accept any option—
i.e. all robots have their threshold above the estimated quality—the process is
considered unsuccessful as no robot will be able to vote for any options.

Our goal is to identify what values of µh and σh (i.e. which response threshold
distribution Dh) maximise the probability of success given a known number of
options n and distribution of options’ quality Dq. Past experiments only consid-
ered Gaussian distributions of the options’ qualities [9, 35, 24], however, environ-
ments with other distributions may exist. In our analysis, we consider three types
of quality distributions Dq ∈ {U , N , K}: the uniform distribution U(µq, σq), the
Gaussian distribution N (µq, σq), and the bimodal distribution K(µ′q, µ

′′
q , σ
′
q, σ
′′
q ).

The bimodal distribution K(µ′q, µ
′′
q , σ
′
q, σ
′′
q ) models environments with subgroups

of good or bad options, that we implement as the sum of two Gaussians with
equal standard deviation σq = σ′q = σ′′q and mean µ′q = µq + δ and µ′′q = µq − δ
for a fixed δ = 2.5. Therefore, hereafter we indicate K(µq, σq) in terms µq and σq
only. It is out of the scope of this study to implement the voting algorithm or let
the robots autonomously set their thresholds; here we only focus on understand-
ing which threshold distribution improves the ability to distinguish options.

Highest average rate of success (HARS) In order to study the relationship be-
tween the probability distribution functions (PDFs) of the options’ qualities Dq
and of the robots’ thresholds Dh, we run simulations for a large set of com-
binations of the two PDFs (i.e. by varying their mean {µq, µh} and standard
deviation {σq, σh}) and computing the average rate of success (i.e. the propor-
tion of successful runs) for each combination. All our simulation code is available
at [2]. The average rate of success is displayed as colourmaps in Fig. 1. To iden-
tify which value of µh (or σh) maximises the average rate of success for a given
µq (or σq), we compute the highest average rate of success (HARS), which is the
simplest curve (in all considered cases, a straight line) that traverses the region
with the highest success rate. We computed the HARS line using a standard
differential evolution method (from the SciPy library [33]) that ranks each line
with the sum of success rate in all points crossed by the line (normalised by the
line length) and returns the highest score line (black dotted lines in Fig. 1).
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(a) (b) Fig. 1. We test all combinations of the
mean options’ quality µq ∈ [0, 15] and the
mean response threshold µh ∈ [0, 15], and
we report the average rate of success (500
runs per combination) as a colourmap, for
Dh = N (µh, σh) and Dq = N (µq, σq). We
fix swarm size to S = 100n and standard
deviations to equal values σh = σq = 1. We

test (a) n = 2 options and (b) n = 40 options. The diagonal light band represents
the region of high success. The black dotted line indicates the highest average rate of
success (HARS line, see Sec. 2), and the red dashed line is the predicted best mean µ∗h,
computed with Eq. (1). The two lines show a linear relationship between µq and µh

with slope ≈ 1. The dark area in the bottom right of each plot indicates an average
success rate of ≈ 1/n, because approximately all robots accept any of the n options,
which are therefore indistinguishable and the expected outcome of the voting phase is
random. Instead, the dark area in the top left of each plot indicates an average success
rate of zero because all n options are rejected by all robots and no decision is made.

Fig. 2. Increasing the number of samples n drawn from
a PDF increases the expected value of q′ (the sample
with the highest value) [7]. The bottom half of each panel
shows a Gaussian distribution N (µ = 10, σ = 1) sliced in
n slices with equal area in terms of CDF. Each panel’s top
half shows, through a histogram, the proportion of times
(out of 103 runs) q′ lays in each of the n bottom slices.
We also include the Gumbel distribution (solid line on top
halves) parameterised following generalised extreme value
distribution (GEVD) theory [7]. Our reasoning, which led
to Eq. (1) (red dashed line), is in good agreement with
results from simulations and GEVD theory.

Number of samples drawn,n = 2
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3 Finding the Best Mean Response Threshold µ∗
h

We investigate how µ∗h—the best mean of the probability distribution of the
robots’ response thresholds Dh = N (µh, σh)—varies for different options’ qual-
ities distributions Dq ∈ {U(µq, σq),N (µq, σq),K(µq, σq)} and different number
of options n. While our first intuition suggested that the best results would be
obtained when the thresholds’ mean is equal to the qualities’ mean, i.e. µ∗h = µq,
we find that this is true for binary (n = 2) decision problems (e.g. see Fig. 1a) but
it is not the case when the number of options increases, n > 2, e.g. see Fig. 1b.
Therefore, we find that the number of options is a highly relevant parameter in
setting the best mean µ∗h of the response threshold distribution.

This result, that at first can look counter-intuitive, can be explained with
a reasoning based on probability theory and statistics. When drawing a large
number of quality values n from the distribution Dq, we can expect that each
of these values, on average, will be distributed according to the PDF of Dq.
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Fig. 3. (a) y-intercept and (b) slope of HARS lines for µ∗h computed as a function of
µq, for varying n (on x-axis) and S (markers), for σh = σq = 1. (c) y-intercept for
varying std. dev. σq (on x-axis) for n = 5, σh = 1. In (a), the dashed lines show the
average for all S and in all plots, the solid lines show the predicted µ∗h with Eq. (1). The
inset of (a) shows the absolute difference between predicted and fitted HARS lines.

Therefore, if we slice Dq into n sections of equal area 1
n in terms of cumulative

distribution function (CDF), on average, we expect that each of the n drawn
values lies in a distinct slice. Following this reasoning, we expect that, on average,
the maximum quality value (among the n qualities) lies in the last slice and
that the second-to-best value lies in the second-to-last slice. Fig. 2 shows this
mechanism numerically for the representative example of a Gaussian Dq, however
the same mechanism also holds for other PDFs, in agreement with results from
the generalised extreme value distribution theory [7]. Most times the highest
value among n random draws falls in the slice with the highest value range. As
we are interested in distinguishing the best option from the others, ideally a large
proportion of thresholds should lay between the highest quality value, which we
identify with the letter q′, and the second highest quality value, which we identify
with q′′. Therefore, the best mean µ∗h of Dh lays between the expected value of
q′ and q′′, which we can compute through the inverse of the CDF of Dq, as the
µ∗h that satisfies the following equation:∫ µ∗

h

−∞
Dq(x|µq, σq)dx = 1− 1

n
, (1)

where Dq(x|µq, σq) is the PDF of Dq at x given µq and σq. Eq. (1) is dependent
on the number of options n. As n increases, the area of the slices decreases and,
in turn, both the expected highest value E(q′) and the best threshold mean µ∗h
increase. This result gets more accurate as the number of options gets larger [7].

Accuracy of our prediction of µ∗h Through simulations, we show that the predic-
tion of Eq. (1) matches the highest average rate of success (HARS lines in Fig. 1
and Fig. S4 in [2]). Fig. 3 shows that the obtained results generalise to a large set
of conditions, for different PDFs and for different swarm sizes. The intercept of
the HARS lines (Fig. 3a) quickly increases for low n, and it then asymptotically
saturates to a constant value for large n.

Fig. 3b shows that the slope of the HARS lines remains constant to ≈ 1 for
all tested types of quality PDFs and values of n and S. Thus, we can consider the
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predicted and fitted lines parallel to each other, and use the distance between
them (inset of Fig. 3a) as the measure for accuracy of Eq. (1), showing low abso-
lute difference and good accuracy in all tested combinations. Eq. (1) generalises
to systems with different variability of the quality values, σq, as shown in Fig. 3c
for n = 5, where the mean µ∗h increases with σq as predicted by theory.

4 Finding the Best Std.Dev. σ∗
h for Response Thresholds

A method to determine the optimal standard deviation of the response threshold
distribution is as important as determining its mean, because the right amount of
variability can optimise the number of robots required to deal with the stochas-
tic nature of the best-of-n decision making process. When the thresholds’ mean
is far from optimal (e.g. µh = µq for n � 2), σh can play an important role
in discerning between high quality options. When σh is much smaller than σq,
the probability that robots will have their response thresholds between q′ and
q′′ is almost null, and all high quality options will be indistinguishable during
the voting phase (Fig. S5 in [2]). Having σh > σq can reduce this problem be-
cause the thresholds are more spread, however is also a waste of resources, as
several thresholds are set to values much lower than necessary and only a small
percentage of robots have a determining role in the collective decision making.
Differently, when µh is set to close to the optimal value µ∗h, the influence of σh is
much reduced. Some variability among response thresholds is always necessary,
however the standard deviation can have relatively low values (σh < σq), and
still cover the relevant quality range, as confirmed by the fitted HARS lines of
Fig. S6a which always have a slope smaller than 1, for µh = µ∗h.

While for µ∗h we derived Eq. (1) from first principles, we did not succeed
for σ∗h. Differently, we numerically fitted curves on simulation results and we
report results in Figs. S6b-c and mathematical equations in Eq. S(1) in the sup-
plementary material [2]. Differently from µ∗h, where the slope was approximately
constant and intercept largely varied (see Fig. S2), for σh vs σq the intercept has
negligible values close to zero (except for small n ≤ 3), while the slope varies
and is sufficient to determine the relationship between σh and σq as a function
of n (see Figs. S6b-c). Similar to the analysis of µh vs µq, the HARS lines of σh
vs σq do not show noteworthy changes with varying number of robots in both
cases of µh = µq and µh = µ∗h in σh vs σq, also when σh = σq in µh vs µq (see
respectively Fig. S3 and Fig. S1 in [2]).

5 Discussion and Conclusion

Minimalistic robots, e.g. organic nanorobots with basic functionalities, have the
potential to disrupt several fields such as medicine, agriculture, and environ-
mental preservation [14, 36, 11]. However, designing solutions for robotic systems
limited in memory, communication, and computation is challenging. In our re-
search, we explore the possibility of using heterogeneous response thresholds
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Fig. 4. Accuracy for µq = 5 and
σq = 2, averaged (a) over
different S = mn with
m ∈ {10, 50, 100, 200, 500},
and (b) over different n ∈
{2, 5, 8, 10, 15, 20, 30, 40, 80, 100},
when the parameters are opti-
mally tuned using our equations
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(solid lines) compared with the case when the distributions are set equal to each other
(dashed lines). The two insets show the benefits of employing µ∗h and σ∗h as (a) the
number of options n increases and (b) the swarm size S decreases.

to make best-of-n decisions. We envision the possibility of simplifying the ex-
isting algorithms used in collective decision making in the context of best-of-n
[19, 23, 28, 29, 31, 32, 37, 3], by removing the (currently necessary) robots’ abil-
ity of (i) scaling the estimated option’s quality in a normalised quality range,
and (ii) memorise the option’s quality in order to modulate the communication
frequency (i.e. weighted voting). Our vision consists in building binary reactive
robots that engage in a unweighted voting without keeping track of options’ qual-
ities [5, 10]. Each robot uses a simple binary response threshold to accept/reject
the sensed option [9, 24], and only accepting robots begin the voting process. In
order to allow the swarm to converge towards the best of the n alternatives, the
(unweighted) voting must begin from a state of relative majority in favour of the
best option [21]. This paper investigates which response threshold distribution
to choose to increase the probability of having such a condition.

We investigated the relationship between Dh (PDF) and various types of en-
vironments, characterised by different Dq (PDF) and the number of options. The
collective accuracy improved almost by 20% for all the tested PDFs when we
tuned the Dh to the optimal value predicted by our theory, compared against the
naive setting of Dh = Dq, especially for large number of options (Fig. 4a), and
small swarm sizes (Fig. 4b). The relative improvement reduces with increasing
swarm size because in very large systems, accuracy approximates 100% for both
optimal and suboptimal response threshold distributions. Nevertheless, we do
not rule out the possibility that the result of reduced benefits for larger swarms
may change once we will include, as planned future work, the subsequent vot-
ing phase. These results will be the starting point for future research aimed to
design decentralised algorithms that allows robots to autonomously vary their
thresholds using simple reactive rules and collectively approximate the values
derived in our study. We believe that this study is a necessary preliminary step
towards the development of minimalistic robot swarms based on adaptive re-
sponse thresholds, capable of solving the best-of-n decision problem.

Acknowledgements S. A. acknowledges full support from IISER Bhopal. A. R.
acknowledges support from F.R.S.-FNRS, of which he is a Chargé de Recherches.
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